Advertisement

Two-Photon Neurotransmitter Uncaging for the Study of Dendritic Integration

  • Alexandra Tran-Van-Minh
  • Nelson Rebola
  • Andreas Hoehne
  • David A. DiGregorioEmail author
Protocol
Part of the Neuromethods book series (NM, volume 148)

Abstract

Neurons transform the information arising from up to thousands of synaptic inputs into specific spiking patterns. Nonlinear dendritic integration is a crucial step in this process and is thought to increase the computational ability of neurons. However, studying how complex spatiotemporal patterns of synaptic inputs drive neuronal spiking is technically challenging. Two-photon neurotransmitter uncaging allows researchers to activate sequences of single synapses with high spatiotemporal precision and thus systematically examine how single and multiple synaptic activation patterns may recruit dendritic nonlinearities. Here, we describe the theoretical and practical considerations of using two-photon uncaging to mimic synaptic activation and monitor the electrical and biochemical signaling in dendrites when evoked by various synaptic patterns.

Keywords

Two-photon microscopy Neurotransmitter uncaging Dendritic integration Synaptic potentials Photolysis Neuronal computations 

Abbreviations

[Glut]

Glutamate concentration

2PLSM

Two-photon laser scanning microscopy

ACSF

Artificial cerebrospinal fluid

AMPAR

α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor

AOD

Acousto-optic deflector

AOM

Acousto-optic modulator

CDNI-glutamate

4-Carboxymethoxy-5,7-Dinitroindolinyl-Glutamate

dI/O

Dendritic input/output relationship

DiO/DPA

Two-component optical voltage sensor made of the neuronal tracer dye DiOC16(3) and dipicrylamine

DNI-glutamate TFA

4-Methoxy-5,7-dinitroindolinyl-L-glutamate trifluoroacetate

GM

The molecular two-photon cross-section is usually quoted in the units of Göppert-Mayer (GM), where 1 GM is 10−50 cm4 s photon−1

I/O

Input/output relationship

MNI-Glutamate

4-Methoxy-7-nitroindolinyl-caged-L-glutamate

NMDAR

N-Methyl-D-aspartate receptor

PSF

Point spread function

PV

Parvalbumin

SLM

Spatial light modulator

u[Glut]

Uncaging-evoked glutamate transient

uEPSC

Uncaging-evoked EPSC

uEPSP

Uncaging-evoked EPSP

VGCC

Voltage-gated calcium channel

θB

Bragg angle, the angle between the incident laser beam into an AOM and the diffracted beam

References

  1. 1.
    Rall W (1967) Distinguishing theoretical synaptic potentials computed for different soma-dendritic distributions of synaptic input. J Neurophysiol 30:1138–1168CrossRefGoogle Scholar
  2. 2.
    Magee JC, Johnston D (1995) Characterization of single voltage-gated Na+ and Ca2+ channels in apical dendrites of rat CA1 pyramidal neurons. J Physiol 487:67–90.  https://doi.org/10.1113/jphysiol.1995.sp020862 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72.  https://doi.org/10.1038/367069a0 CrossRefPubMedGoogle Scholar
  4. 4.
    Williams SR, Mitchell SJ (2008) Direct measurement of somatic voltage clamp errors in central neurons. Nat Neurosci 11:790–798.  https://doi.org/10.1038/nn.2137 CrossRefPubMedGoogle Scholar
  5. 5.
    Corrie JET (2005) Photoremovable protecting groups used for the caging of biomolecules. Dyn Stud Biol 1999:1–94Google Scholar
  6. 6.
    Lester HA, Nerbonne JM (1982) Physiological and pharmacological manipulations with light flashes. Annu Rev Biophys Bioeng 11:151–175.  https://doi.org/10.1146/annurev.bb.11.060182.001055 CrossRefPubMedGoogle Scholar
  7. 7.
    Sarkisov DV, Wang SS-H (2007) Combining uncaging techniques with patch-clamp recording and optical physiology. In: Walz W (ed) Neuromethods, Patch-Clamp analysis, vol 38, 2nd edn. Humana Press, Totowa, NJ, pp 149–168.  https://doi.org/10.1007/978-1-59745-492-6_5 CrossRefGoogle Scholar
  8. 8.
    Palma-Cerda F, Auger C, Crawford DJ et al (2012) New caged neurotransmitter analogs selective for glutamate receptor sub-types based on methoxynitroindoline and nitrophenylethoxycarbonyl caging groups. Neuropharmacology 63:624–634.  https://doi.org/10.1016/j.neuropharm.2012.05.010 CrossRefPubMedGoogle Scholar
  9. 9.
    Fino E, Araya R, Peterka DS et al (2009) RuBi-Glutamate: two-photon and visible-light photoactivation of neurons and dendritic spines. Front Neural Circuits 3:1–9.  https://doi.org/10.3389/neuro.04.002.2009
  10. 10.
    Zipfel WR, Williams RM, Webb WW (2003) Nonlinear magic: multiphoton microscopy in the biosciences. Nat Biotechnol 21:1369–1377.  https://doi.org/10.1038/nbt899 CrossRefPubMedGoogle Scholar
  11. 11.
    Trigo FF, Corrie JET, Ogden D (2009) Laser photolysis of caged compounds at 405 nm: photochemical advantages, localisation, phototoxicity and methods for calibration. J Neurosci Meth 180:9–21.  https://doi.org/10.1016/j.jneumeth.2009.01.032
  12. 12.
    Carter AG, Sabatini BL (2004) State-dependent calcium signaling in dendritic spines of striatal medium spiny neurons. Neuron 44:483–493.  https://doi.org/10.1016/j.neuron.2004.10.013 CrossRefPubMedGoogle Scholar
  13. 13.
    Losonczy A, Magee JC (2006) Integrative properties of radial oblique dendrites in hippocampal CA1 pyramidal neurons. Neuron 50:291–307.  https://doi.org/10.1016/j.neuron.2006.03.016 CrossRefPubMedGoogle Scholar
  14. 14.
    Branco T, Häusser M (2011) Synaptic integration gradients in single cortical pyramidal cell dendrites. Neuron 69:885–892.  https://doi.org/10.1016/j.neuron.2011.02.006 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tran-Van-Minh A, Abrahamsson T, Cathala L, DiGregorio DA (2016) Differential dendritic integration of synaptic potentials and calcium in cerebellar interneurons. Neuron 91:837–850.  https://doi.org/10.1016/j.neuron.2016.07.029 CrossRefPubMedGoogle Scholar
  16. 16.
    Salierno M, Marceca E, Peterka DS et al (2010) A fast ruthenium polypyridine cage complex photoreleases glutamate with visible or IR light in one and two photon regimes. J Inorg Biochem 104:418–422.  https://doi.org/10.1016/j.jinorgbio.2009.12.004 CrossRefPubMedGoogle Scholar
  17. 17.
    Ellis-Davies GCR, Matsuzaki M, Paukert M et al (2007) 4-Carboxymethoxy-5,7-Dinitroindolinyl-Glu: an improved caged glutamate for expeditious ultraviolet and two-photon photolysis in brain slices. J Neurosci 27:6601–6604.  https://doi.org/10.1523/JNEUROSCI.1519-07.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Chiovini B, Turi GF, Katona G et al (2014) Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves. Neuron 82:908–924.  https://doi.org/10.1016/j.neuron.2014.04.004 CrossRefPubMedGoogle Scholar
  19. 19.
    Gasparini S, Magee JC (2006) State-dependent dendritic computation in hippocampal CA1 pyramidal neurons. J Neurosci 26:2088–2100.  https://doi.org/10.1523/JNEUROSCI.4428-05.2006
  20. 20.
    Fernandez-Alfonso T, Nadella KMNS, Iacaruso MF et al (2014) Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope. J Neurosci Meth 222:69–81.  https://doi.org/10.1016/j.jneumeth.2013.10.021
  21. 21.
    Katona G, Szalay G, Maák P et al (2012) Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat Methods 9:201–208.  https://doi.org/10.1038/nmeth.1851 CrossRefPubMedGoogle Scholar
  22. 22.
    Lutz C, Otis TS, DeSars V et al (2008) Holographic photolysis of caged neurotransmitters. Nat Methods 5:821–827.  https://doi.org/10.1038/nmeth.1241 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Hernandez O, Papagiakoumou E, Tanese D et al (2016) Three-dimensional spatiotemporal focusing of holographic patterns. Nat Commun 7:12716.  https://doi.org/10.1038/ncomms12716 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Anselmi F, Ventalon C, Begue A et al (2011) Three-dimensional imaging and photostimulation by remote-focusing and holographic light patterning. Proc Natl Acad Sci USA 108:19504–19509.  https://doi.org/10.1073/pnas.1109111108 CrossRefPubMedGoogle Scholar
  25. 25.
    Bovetti S, Fellin T (2015) Optical dissection of brain circuits with patterned illumination through the phase modulation of light. J Neurosci Meth 241:66–77.  https://doi.org/10.1016/j.jneumeth.2014.12.002
  26. 26.
    Smirnov MS, Evans PR, Garrett TR et al (2017) Automated remote focusing, drift correction, and photostimulation to evaluate structural plasticity in dendritic spines. PLoS One 12:1–14.  https://doi.org/10.1371/journal.pone.0170586 CrossRefGoogle Scholar
  27. 27.
    Matsuzaki M, Ellis-Davies GC, Nemoto T et al (2001) Dendritic spine geometry is critical for AMPA receptor expression in hippocampal CA1 pyramidal neurons. Nat Neurosci 4:1086–1092.  https://doi.org/10.1038/nn736 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Jonas P (2000) The time course of signaling at central glutamatergic synapses. News Physiol Sci 15:83–89.  https://doi.org/10.1113/jphysiol.1992.sp019417 CrossRefPubMedGoogle Scholar
  29. 29.
    Crank J (1975) The mathematics of diffusion, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  30. 30.
    Nielsen TA, DiGregorio DA, Silver RA (2004) Modulation of glutamate mobility reveals the mechanism underlying slow-rising AMPAR EPSCs and the diffusion coefficient in the synaptic cleft. Neuron 42:757–771.  https://doi.org/10.1016/j.neuron.2004.04.003 CrossRefPubMedGoogle Scholar
  31. 31.
    DiGregorio DA, Rothman JS, Nielsen TA, Silver RA (2007) Desensitization properties of AMPA receptors at the cerebellar mossy fiber granule cell synapse. J Neurosci 27:8344–8357.  https://doi.org/10.1523/JNEUROSCI.2399-07.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kiskin NI, Chillingworth R, McCray JA et al (2002) The efficiency of two-photon photolysis of a “caged” fluorophore, o-1-(2-nitrophenyl)ethylpyranine, in relation to photodamage of synaptic terminals. Eur Biophys J 30:588–604.  https://doi.org/10.1007/s00249-001-0187-x CrossRefPubMedGoogle Scholar
  33. 33.
    Koester HJ, Baur D, Uhl R, Hell SW (1999) Ca2+ fluorescence imaging with pico- and femtosecond two-photon excitation: signal and photodamage. Biophys J 77:2226–2236.  https://doi.org/10.1016/S0006-3495(99)77063-3 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Axelrod D, Koppel DE, Schlessinger J et al (1976) Mobility measurement by analysis of fluorescence recovery kinetics. Biophys J 16:1055–1069CrossRefGoogle Scholar
  35. 35.
    Kiskin NI, Ogden D (2002) Two-photon excitation and photolysis by pulsed laser illumination modelled by spatially non-uniform reactions with simultaneous diffusion. Eur Biophys J 30:571–587.  https://doi.org/10.1007/s00249-001-0186-y CrossRefPubMedGoogle Scholar
  36. 36.
    McBain CJ, Fisahn A (2001) Interneurons unbound. Nat Rev Neurosci 2:11–23.  https://doi.org/10.1038/35049047 CrossRefPubMedGoogle Scholar
  37. 37.
    Nevian T, Larkum ME, Polsky A, Schiller J (2007) Properties of basal dendrites of layer 5 pyramidal neurons: a direct patch-clamp recording study. Nat Neurosci 10:206–214.  https://doi.org/10.1038/nn1826 CrossRefPubMedGoogle Scholar
  38. 38.
    Magee JC, Cook EP (2000) Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons. Nat Neurosci 3:895–903CrossRefGoogle Scholar
  39. 39.
    Smith MA, Ellis-Davies GCR, Magee JC (2003) Mechanism of the distance-dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons. J Physiol 548:245–258.  https://doi.org/10.1113/jphysiol.2002.036376 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Geiger JRP, Lübke J, Roth A et al (1997) Submillisecond AMPA receptor-mediated signalling at a principal neuron-interneuron synapse. Neuron 18:1009–1023CrossRefGoogle Scholar
  41. 41.
    Cane M, Maco B, Knott G, Holtmaat A (2014) The relationship between PSD-95 clustering and spine stability in vivo. J Neurosci 34:2075–2086.  https://doi.org/10.1523/JNEUROSCI.3353-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Abrahamsson T, Cathala L, Matsui K et al (2012) Thin dendrites of cerebellar interneurons confer sublinear synaptic integration and a gradient of short-term plasticity. Neuron 73:1159–1172.  https://doi.org/10.1016/j.neuron.2012.01.027 CrossRefPubMedGoogle Scholar
  43. 43.
    Fortin DA, Tillo SE, Yang G et al (2014) Live imaging of endogenous PSD-95 using ENABLED: a conditional strategy to fluorescently label endogenous proteins. J Neurosci 34:16698–16712.  https://doi.org/10.1523/JNEUROSCI.3888-14.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Tønnesen J, Katona G, Rózsa B, Nägerl UV (2014) Spine neck plasticity regulates compartmentalization of synapses. Nat Neurosci 17:678–685.  https://doi.org/10.1038/nn.3682 CrossRefPubMedGoogle Scholar
  45. 45.
    Popovic MA, Carnevale N, Rozsa B, Zecevic D (2015) Electrical behaviour of dendritic spines as revealed by voltage imaging. Nat Commun 6:8436.  https://doi.org/10.1038/ncomms9436 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Acker CD, Hoyos E, Loew LM (2016) EPSPs measured in proximal dendritic spines of cortical pyramidal neurons. eNeuro 3:1–13.  https://doi.org/10.1523/ENEURO.0050-15.2016 CrossRefGoogle Scholar
  47. 47.
    Bradley J, Luo R, Otis TS, DiGregorio DA (2009) Submillisecond optical reporting of membrane potential in situ using a neuronal tracer dye. J Neurosci 29:9197–9209.  https://doi.org/10.1523/JNEUROSCI.1240-09.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Fink AE, Bender KJ, Trussell LO et al (2012) Two-photon compatibility and single-voxel, single-trial detection of subthreshold neuronal activity by a two-component optical voltage sensor. PLoS One 7.  https://doi.org/10.1371/journal.pone.0041434
  49. 49.
    Palmer LM, Stuart GJ (2009) Membrane potential changes in dendritic spines during action potentials and synaptic input. J Neurosci 29:6897–6903.  https://doi.org/10.1523/JNEUROSCI.5847-08.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Krueppel R, Remy S, Beck H (2011) Dendritic integration in hippocampal dentate granule cells. Neuron 71:512–528.  https://doi.org/10.1016/j.neuron.2011.05.043 CrossRefPubMedGoogle Scholar
  51. 51.
    Poirazi P, Brannon T, Mel BW (2003) Pyramidal neuron as two-layer neural network. Neuron 37:989–999.  https://doi.org/10.1016/S0896-6273(03)00149-1 CrossRefPubMedGoogle Scholar
  52. 52.
    Hu H, Martina M, Jonas P (2010) Dendritic mechanisms underlying rapid synaptic activation of fast-spiking hippocampal interneurons. Science 327:52–58.  https://doi.org/10.1126/science.1177876 CrossRefPubMedGoogle Scholar
  53. 53.
    Branco T, Clark BA, Häusser M (2010) Dendritic discrimination of temporal input sequences in cortical neurons. Science 329:1671–1675.  https://doi.org/10.1126/science.1189664 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Agmon-Snir H, Carr CE, Rinzel J (1998) The role of dendrites in auditory coincidence detection. Nature 393:268–272.  https://doi.org/10.1038/30505 CrossRefPubMedGoogle Scholar
  55. 55.
    Mel BW, Ruderman DL, Archie KA (1998) Translation-invariant orientation tuning in visual “complex” cells could derive from intradendritic computations. J Neurosci 18:4325–4334.  https://doi.org/10.1098/rspb.1986.0060 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Losonczy A, Makara JK, Magee JC (2008) Compartmentalized dendritic plasticity and input feature storage in neurons. Nature 452:436–441.  https://doi.org/10.1038/nature06725 CrossRefPubMedGoogle Scholar
  57. 57.
    Xu N, Harnett MT, Williams SR et al (2012) Nonlinear dendritic integration of sensory and motor input during an active sensing task. Nature 492:247–251.  https://doi.org/10.1038/nature11601 CrossRefPubMedGoogle Scholar
  58. 58.
    Schmidt-Hieber C, Toleikyte G, Aitchison L et al (2017) Active dendritic integration as a mechanism for robust and precise grid cell firing. Nat Neurosci 20:1114–1121.  https://doi.org/10.1038/nn.4582 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Wilson DE, Whitney DE, Scholl B, Fitzpatrick D (2016) Orientation selectivity and the functional clustering of synaptic inputs in primary visual cortex. Nat Neurosci 19:1003–1009.  https://doi.org/10.1038/nn.4323 CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Scholl B, Wilson DE, Fitzpatrick D (2017) Local order within global disorder: synaptic architecture of visual space. Neuron 96:1127–1138.  https://doi.org/10.1016/j.neuron.2017.10.017 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Soler-Llavina GJ, Sabatini BL (2006) Synapse-specific plasticity and compartmentalized signaling in cerebellar stellate cells. Nat Neurosci 9:798–806.  https://doi.org/10.1038/nn1698 CrossRefPubMedGoogle Scholar
  62. 62.
    Weber JP, Andrásfalvy BK, Polito M et al (2016) Location-dependent synaptic plasticity rules by dendritic spine cooperativity. Nat Commun 7:11380.  https://doi.org/10.1038/ncomms11380 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Silver RA (2010) Neuronal arithmetic. Nat Rev Neurosci 11:474–489.  https://doi.org/10.1038/nrn2864 CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Tran-Van-Minh A, Cazé RD, Abrahamsson T et al (2015) Contribution of sublinear and supralinear dendritic integration to neuronal computations. Front Cell Neurosci 9:1–15.  https://doi.org/10.3389/fncel.2015.00067 CrossRefGoogle Scholar
  65. 65.
    Higley MJ, Soler-Llavina GJ, Sabatini BL (2009) Cholinergic modulation of multivesicular release regulates striatal synaptic potency and integration. Nat Neurosci 12:1121–1128.  https://doi.org/10.1038/nn.2368 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Alexandra Tran-Van-Minh
    • 1
    • 2
  • Nelson Rebola
    • 1
    • 2
  • Andreas Hoehne
    • 1
    • 2
  • David A. DiGregorio
    • 1
    • 2
    Email author
  1. 1.Laboratory of Dynamic Neuronal Imaging, Department of Neuroscience, Institut PasteurParisFrance
  2. 2.CNRS UMR 3571ParisFrance

Personalised recommendations