Advertisement

Voltage Imaging with ANNINE Dyes and Two-Photon Microscopy

  • Christopher J. Roome
  • Bernd KuhnEmail author
Protocol
Part of the Neuromethods book series (NM, volume 148)

Abstract

Voltage imaging is a tried and tested tool for revealing changes in neuronal membrane voltage at high temporal and spatial resolution in vitro and in vivo. However, single-photon in vivo voltage imaging using cameras and synthetic dyes does not allow depth resolution in highly scattering tissue such as the mammalian brain and risks introducing artifacts due to phototoxicity and bleaching. In contrast, voltage imaging with synthetic electrochromic dyes and two-photon excitation near the red spectral edge of absorption circumvents these challenges, allowing depth-resolved measurement of voltage changes at high spatial and temporal resolution in scattering tissue with negligible phototoxicity and bleaching.

Here, we describe how to image voltage using two-photon microscopy and the voltage-sensitive dyes ANNINE-6 and ANNINE-6plus. The key advantages of these dyes are that the voltage response is linear, the temporal resolution is essentially limited by the imaging speed, and phototoxicity and bleaching can be neglected when an excitation wavelength close to the red spectral edge of absorption is chosen. We report how to image membrane voltage of dissociated cells in culture. We provide protocols for imaging average membrane voltage in vitro (in brain slices) and in anesthetized and awake animals. Finally, we describe the labeling of single neurons in vivo and how to measure supra- and sub-threshold voltage changes in their dendrites in the awake animal. Voltage can be imaged from internally labeled cells for at least 2 weeks after a single electroporation. Dendritic voltage imaging can be combined with electrical recording, calcium imaging, and/or pharmacology.

Keywords

Voltage-sensitive dye VSD Voltage imaging ANNINE Membrane potential Two-photon In vitro In vivo 

Notes

Acknowledgments

The authors thank Espen Hartveit, Steven D. Aird, Neil Dalphin, Ray X. Lee, Mohamed M. Eltabbal, Alisher Duspayev, Claudia Cecchetto, and Leonidas Georgiou for valuable feedback on the manuscript and the Okinawa Institute of Science and Technology Graduate University for internal funding.

References

  1. 1.
    Cohen LB, Salzberg BM (1978) Optical measurement of membrane potential. Rev Physiol Bioch P 83:35–88CrossRefGoogle Scholar
  2. 2.
    Cohen LB, Salzberg BM, Davila HV, Ross WN, Landowne D, Waggoner AS, Wang CH (1974) Changes in axon fluorescence during activity – molecular probes of membrane potential. J Membr Biol 19(1–2):1–36.  https://doi.org/10.1007/Bf01869968 CrossRefPubMedGoogle Scholar
  3. 3.
    Fluhler E, Burnham VG, Loew LM (1985) Spectra, membrane-binding, and potentiometric responses of new charge shift probes. Biochem 24(21):5749–5755.  https://doi.org/10.1021/bi00342a010 CrossRefGoogle Scholar
  4. 4.
    Grinvald A, Hildesheim R, Farber IC, Anglister L (1982) Improved fluorescent probes for the measurement of rapid changes in membrane potential. Biophys J 39(3):301–308CrossRefGoogle Scholar
  5. 5.
    Hübener G, Lambacher A, Fromherz P (2003) Anellated hemicyanine dyes with large symmetrical solvatochromism of absorption and fluorescence. J Phys Chem B 107(31):7896–7902.  https://doi.org/10.1021/jp0345809 CrossRefGoogle Scholar
  6. 6.
    Kuhn B, Fromherz P (2003) Anellated hemicyanine dyes in a neuron membrane: molecular Stark effect and optical voltage recording. J Phys Chem B 107(31):7903–7913.  https://doi.org/10.1021/jp0345811 CrossRefGoogle Scholar
  7. 7.
    Loew LM, Bonneville GW, Surow J (1978) Charge shift optical probes of membrane potential – theory. Biochem 17(19):4065–4071.  https://doi.org/10.1021/bi00612a030 CrossRefGoogle Scholar
  8. 8.
    Loew LM, Simpson LL (1981) Charge-shift probes of membrane potential – a probable electrochromic mechanism for para-aminostyrylpyridinium probes on a hemispherical lipid bilayer. Biophys J 34(3):353–365CrossRefGoogle Scholar
  9. 9.
    Grinvald A, Frostig RD, Lieke E, Hildesheim R (1988) Optical imaging of neuronal activity. Physiol Rev 68(4):1285–1366CrossRefGoogle Scholar
  10. 10.
    Grinvald A, Hildesheim R (2004) VSDI: a new era in functional imaging of cortical dynamics. Nat Rev Neurosci 5(11):874–885.  https://doi.org/10.1038/nrn1536 CrossRefPubMedGoogle Scholar
  11. 11.
    Antic S, Zecevic D (1995) Optical signals from neurons with internally applied voltage-sensitive dyes. J Neurosci 15(2):1392–1405CrossRefGoogle Scholar
  12. 12.
    Palmer LM, Stuart GJ (2006) Site of action potential initiation in layer 5 pyramidal neurons. J Neurosci 26(6):1854–1863.  https://doi.org/10.1523/Jneurosci.4812-05.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Meyer E, Müller CO, Fromherz P (1997) Cable properties of dendrites in hippocampal neurons of the rat mapped by a voltage-sensitive dye. Eur J Neurosci 9(4):778–785.  https://doi.org/10.1111/j.1460-9568.1997.tb01426.x CrossRefPubMedGoogle Scholar
  14. 14.
    Fromherz P, Müller CA (1994) Cable properties of a straight neurite of a leech neuron probed by a voltage-sensitive dye. Proc Natl Acad Sci U S A 91(10):4604–4608.  https://doi.org/10.1073/pnas.91.10.4604 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Antic S, Major G, Zecevic D (1999) Fast optical recordings of membrane potential changes from dendrites of pyramidal neurons. J Neurophysiol 82(3):1615–1621.  https://doi.org/10.1152/jn.1999.82.3.1615 CrossRefPubMedGoogle Scholar
  16. 16.
    Canepari M, Zecevic D (2010) Membrane potential imaging in the nervous system: methods and applications. Springer, New YorkGoogle Scholar
  17. 17.
    Peterka DS, Takahashi H, Yuste R (2011) Imaging voltage in neurons. Neuron 69(1):9–21.  https://doi.org/10.1016/j.neuron.2010.12.010 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Knöpfel T (2012) Genetically encoded optical indicators for the analysis of neuronal circuits. Nat Rev Neurosci 13(10):687–700.  https://doi.org/10.1038/nrn3293 CrossRefPubMedGoogle Scholar
  19. 19.
    Antic SD, Empson RM, Knöpfel T (2016) Voltage imaging to understand connections and functions of neuronal circuits. J Neurophysiol 116(1):135–152.  https://doi.org/10.1152/jn.00226.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ephardt H, Fromherz P (1993) Fluorescence of amphiphilic hemicyanine dyes without free double-bonds. J Phys Chem 97(17):4540–4547.  https://doi.org/10.1021/j100119a048 CrossRefGoogle Scholar
  21. 21.
    Fromherz P (1995) Monopole-dipole model for symmetrical solvatochromism of hemicyanine dyes. J Phys Chem 99(18):7188–7192.  https://doi.org/10.1021/j100018a061 CrossRefGoogle Scholar
  22. 22.
    Fromherz P, Heilemann A (1992) Twisted internal charge-transfer in (aminophenyl)pyridinium. J Phys Chem 96(17):6864–6866.  https://doi.org/10.1021/j100196a004 CrossRefGoogle Scholar
  23. 23.
    Fromherz P, Hübener G, Kuhn B, Hinner MJ (2008) ANNINE-6plus, a voltage-sensitive dye with good solubility, strong membrane binding and high sensitivity. Eur Biophys J Biophy 37(4):509–514.  https://doi.org/10.1007/s00249-007-0210-y CrossRefGoogle Scholar
  24. 24.
    Lambacher A, Fromherz P (2001) Orientation of hemicyanine dye in lipid membrane measured by fluorescence interferometry on a silicon chip. J Phys Chem B 105(2):343–346.  https://doi.org/10.1021/jp002843i CrossRefGoogle Scholar
  25. 25.
    Röcker C, Heilemann A, Fromherz P (1996) Time-resolved fluorescence of a hemicyanine dye: dynamics of rotamerism and resolvation. J Phys Chem 100(30):12172–12177.  https://doi.org/10.1021/jp960095k CrossRefGoogle Scholar
  26. 26.
    Ephardt H, Fromherz P (1991) Anillnopyridinium – solvent-dependent fluorescence by intramolecular charge-transfer. J Phys Chem 95(18):6792–6797.  https://doi.org/10.1021/j100171a011 CrossRefGoogle Scholar
  27. 27.
    Kuhn B and Roome CJ (2019) Primer to voltage imaging with ANNINE dyes and two-photon microscopy. Front. Cell. Neurosci. 13:321.  https://doi.org/10.3389/fncel.2019.00321
  28. 28.
    Kuhn B, Fromherz P, Denk W (2004) High sensitivity of Stark-shift voltage-sensing dyes by one- or two-photon excitation near the red spectral edge. Biophys J 87(1):631–639.  https://doi.org/10.1529/biophysj.104.040477 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Acker CD, Hoyos E, Loew LM (2016) EPSPs measured in proximal dendritic spines of cortical pyramidal neurons. eNeuro 3(2).  https://doi.org/10.1523/ENEURO.0050-15.2016
  30. 30.
    Kuhn B, Denk W, Bruno RM (2008) In vivo two-photon voltage-sensitive dye imaging reveals top-down control of cortical layers 1 and 2 during wakefulness. Proc Natl Acad Sci U S A 105(21):7588–7593.  https://doi.org/10.1073/pnas.0802462105 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Acker CD, Yan P, Loew LM (2011) Single-voxel recording of voltage transients in dendritic spines. Biophys J 101(2):L11–L13.  https://doi.org/10.1016/j.bpj.2011.06.021 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Yan P, Acker CD, Zhou WL, Lee P, Bollensdorff C, Negrean A, Lotti J, Sacconi L, Antic SD, Kohl P, Mansvelder HD, Pavone FS, Loew LM (2012) Palette of fluorinated voltage-sensitive hemicyanine dyes. Proc Natl Acad Sci U S A 109(50):20443–20448.  https://doi.org/10.1073/pnas.1214850109 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Fisher JA, Barchi JR, Welle CG, Kim GH, Kosterin P, Obaid AL, Yodh AG, Contreras D, Salzberg BM (2008) Two-photon excitation of potentiometric probes enables optical recording of action potentials from mammalian nerve terminals in situ. J Neurophysiol 99(3):1545–1553.  https://doi.org/10.1152/jn.00929.2007 CrossRefPubMedGoogle Scholar
  34. 34.
    Millard AC, Campagnola PJ, Mohler W, Lewis A, Loew LM (2003) Second harmonic imaging microscopy. Methods Enzymol 361:47–69CrossRefGoogle Scholar
  35. 35.
    Helmchen F, Denk W (2005) Deep tissue two-photon microscopy. Nat Methods 2(12):932–940.  https://doi.org/10.1038/nmeth818 CrossRefPubMedGoogle Scholar
  36. 36.
    Lu R, Sun W, Liang Y, Kerlin A, Bierfeld J, Seelig JD, Wilson DE, Scholl B, Mohar B, Tanimoto M, Koyama M, Fitzpatrick D, Orger MB, Ji N (2017) Video-rate volumetric functional imaging of the brain at synaptic resolution. Nat Neurosci 20(4):620–628.  https://doi.org/10.1038/nn.4516 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Roome CJ, Kuhn B (2018) Simultaneous dendritic voltage and calcium imaging and somatic recording from Purkinje neurons in awake mice. Nat Commun 9(1):3388.  https://doi.org/10.1038/s41467-018-05900-3 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nadella KMNS, Ros H, Baragli C, Griffiths VA, Konstantinou G, Koimtzis T, Evans GJ, Kirkby PA, Silver RA (2016) Random-access scanning microscopy for 3D imaging in awake behaving animals. Nat Methods 13(12):1001–1004.  https://doi.org/10.1038/Nmeth.4033 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Reddy GD, Kelleher K, Fink R, Saggau P (2008) Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nat Neurosci 11(6):713–720.  https://doi.org/10.1038/nn.2116 CrossRefPubMedCentralGoogle Scholar
  40. 40.
    Katona G, Szalay G, Maak P, Kaszas A, Veress M, Hillier D, Chiovini B, Vizi ES, Roska B, Rozsa B (2012) Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes. Nat Methods 9(2):201–208.  https://doi.org/10.1038/nmeth.1851 CrossRefPubMedGoogle Scholar
  41. 41.
    Pages S, Cote D, De Koninck P (2011) Optophysiological approach to resolve neuronal action potentials with high spatial and temporal resolution in cultured neurons. Front Cell Neurosci 5:20.  https://doi.org/10.3389/fncel.2011.00020 CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Heo C, Park H, Kim YT, Baeg E, Kim YH, Kim SG, Suh M (2016) A soft, transparent, freely accessible cranial window for chronic imaging and electrophysiology. Sci Rep 6:27818.  https://doi.org/10.1038/srep27818 CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Roome CJ, Kuhn B (2014) Chronic cranial window with access port for repeated cellular manipulations, drug application, and electrophysiology. Front Cell Neurosci 8:379.  https://doi.org/10.3389/fncel.2014.00379 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vranesic I, Iijima T, Ichikawa M, Matsumoto G, Knöpfel T (1994) Signal transmission in the parallel fiber-Purkinje cell system visualized by high-resolution imaging. Proc Natl Acad Sci U S A 91(26):13014–13017CrossRefGoogle Scholar
  45. 45.
    Petersen CC, Grinvald A, Sakmann B (2003) Spatiotemporal dynamics of sensory responses in layer 2/3 of rat barrel cortex measured in vivo by voltage-sensitive dye imaging combined with whole-cell voltage recordings and neuron reconstructions. J Neurosci 23(4):1298–1309CrossRefGoogle Scholar
  46. 46.
    Braitenberg V, Schüz A (1998) Cortex: statistics and geometry of neuronal connectivity, 2nd edn. Springer, Berlin/New YorkCrossRefGoogle Scholar
  47. 47.
    Djurisic M, Antic S, Chen WR, Zecevic D (2004) Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. J Neurosci 24(30):6703–6714.  https://doi.org/10.1523/JNEUROSCI.0307-04.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Kitamura K, Häusser M (2011) Dendritic calcium signaling triggered by spontaneous and sensory-evoked climbing fiber input to cerebellar Purkinje cells in vivo. J Neurosci 31(30):10847–10858.  https://doi.org/10.1523/JNEUROSCI.2525-10.2011
  49. 49.
    Holtmaat A, Bonhoeffer T, Chow DK, Chuckowree J, De Paola V, Hofer SB, Hübener M, Keck T, Knott G, Lee WC, Mostany R, Mrsic-Flogel TD, Nedivi E, Portera-Cailliau C, Svoboda K, Trachtenberg JT, Wilbrecht L (2009) Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Prot 4(8):1128–1144.  https://doi.org/10.1038/nprot.2009.89
  50. 50.
    Mostany R, Portera-Cailliau C (2008) A craniotomy surgery procedure for chronic brain imaging. J Vis Exp (12):e680.  https://doi.org/10.3791/680
  51. 51.
    Grinvald A, Lieke E, Frostig RD, Gilbert CD, Wiesel TN (1986) Functional architecture of cortex revealed by optical imaging of intrinsic signals. Nature 324(6095):361–364.  https://doi.org/10.1038/324361a0 CrossRefPubMedGoogle Scholar
  52. 52.
    Bonhoeffer T, Grinvald A (1996) Optical imaging based on intrinsic signals: the methodology. In: Toga AW, Mazziotta JC (eds) Brain mapping: the methods, 1st edn. Academic Press, San Diego, pp 55–97Google Scholar
  53. 53.
    Theer P, Kuhn B, Keusters D, Denk W (2005) Two-photon microscopy and imaging. In: Meyers RA (ed) Encyclopedia of molecular biology and molecular medicine, vol 15. 2nd edn. VCH, Weinheim/New York, pp 61–87Google Scholar
  54. 54.
    Pologruto TA, Sabatini BL, Svoboda K (2003) ScanImage: flexible software for operating laser scanning microscopes. Biomed Eng Online 2:13.  https://doi.org/10.1186/1475-925X-2-13 CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9(7):671–675CrossRefGoogle Scholar
  56. 56.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682.  https://doi.org/10.1038/nmeth.2019 CrossRefGoogle Scholar
  57. 57.
    Vecellio M, Schwaller B, Meyer M, Hunziker W, Celio MR (2000) Alterations in Purkinje cell spines of calbindin D-28 k and parvalbumin knock-out mice. Eur J Neurosci 12(3):945–954CrossRefGoogle Scholar
  58. 58.
    Kuhn B, Ozden I, Lampi Y, Hasan MT, Wang SS (2012) An amplified promoter system for targeted expression of calcium indicator proteins in the cerebellar cortex. Front Neural Circuits 6:49.  https://doi.org/10.3389/fncir.2012.00049 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Zimmermann T (2005) Spectral imaging and linear unmixing in light microscopy. Adv Biochem Eng Biotechnol 95:245–265.  https://doi.org/10.1007/b102216 CrossRefPubMedGoogle Scholar
  60. 60.
    Thorne RG, Nicholson C (2006) In vivo diffusion analysis with quantum dots and dextrans predicts the width of brain extracellular space. Proc Natl Acad Sci U S A 103(14):5567–5572.  https://doi.org/10.1073/pnas.0509425103 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hinner MJ, Hübener G, Fromherz P (2004) Enzyme-induced staining of biomembranes with voltage-sensitive fluorescent dyes. J Phys Chem B 108(7):2445–2453.  https://doi.org/10.1021/jp036811h CrossRefPubMedGoogle Scholar
  62. 62.
    Hinner MJ, Hübener G, Fromherz P (2006) Genetic targeting of individual cells with a voltage-sensitive dye through enzymatic activation of membrane binding. Chembiochem 7(3):495–505.  https://doi.org/10.1002/cbic.200500395 CrossRefPubMedGoogle Scholar
  63. 63.
    Ng DN, Fromherz P (2011) Genetic targeting of a voltage-sensitive dye by enzymatic activation of phosphonooxymethyl-ammonium derivative. ACS Chem Biol 6(5):444–451.  https://doi.org/10.1021/cb100312d CrossRefPubMedGoogle Scholar
  64. 64.
    Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N, Zimprich C, Wood MG, Learish R, Ohana RF, Urh M, Simpson D, Mendez J, Zimmerman K, Otto P, Vidugiris G, Zhu J, Darzins A, Klaubert DH, Bulleit RF, Wood KV (2008) HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem Biol 3(6):373–382.  https://doi.org/10.1021/cb800025k CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Okinawa Institute of Science and Technology Graduate UniversityOkinawaJapan

Personalised recommendations