Multiphoton Ca2+ Imaging of Astrocytes with Genetically Encoded Indicators Delivered by a Viral Approach

  • Rune Enger
  • Rolf Sprengel
  • Erlend A. NagelhusEmail author
  • Wannan Tang
Part of the Neuromethods book series (NM, volume 148)


Decades of research have unraveled the complex functioning of neurons in the central nervous system. Our knowledge of the second main player of the brain – the non-excitable glial cells – clearly lags behind that of neurons. Pioneering work in the 1990s provided evidence that star-shaped glial cells – astrocytes – sense and modulate neuronal activity by intracellular Ca2+ signals. However, the precise roles of astrocytic Ca2+ signaling in brain physiology and pathophysiology are still highly controversial, largely due to technical limitations of previous Ca2+ imaging tools. With recent innovations in laser microscopy and engineering of molecular probes, the field of glioscience is undergoing a revolution. This chapter describes the application of multiphoton microscopy and genetically encoded fluorescent Ca2+ indicators to reveal astrocytic Ca2+ signals in acute brain slices and in vivo, both in anesthetized and in awake behaving animals.


Astrocytes Ca2+ signaling Genetically encoded calcium indicator GECI GCaMP6 Glia rAAV gene transduction Two-photon microscopy 



This work was supported by grants from South and Eastern Norway Regional Health Authority (2016070); the Research Council of Norway (grants 240476, 249988, and 262552); the European Union’s Seventh Framework Programme for research, technological development, and demonstration under grant agreement no. 601055; and the Letten Foundation.


  1. 1.
    Sherwood CC, Stimpson CD, Raghanti MA, Wildman DE, Uddin M, Grossman LI, Goodman M, Redmond JC, Bonar CJ, Erwin JM, Hof PR (2006) Evolution of increased glia-neuron ratios in the human frontal cortex. Proc Natl Acad Sci U S A 103:13606–13611PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL, Leite REP, Jacob Filho W, Lent R, Herculano-Houzel S (2009) Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol 513:532–541PubMedCrossRefGoogle Scholar
  3. 3.
    Rusakov DA (2015) Disentangling calcium-driven astrocyte physiology. Nat Rev Neurosci 16:226–233PubMedCrossRefGoogle Scholar
  4. 4.
    Takano T, Tian G-F, Peng W, Lou N, Libionka W, Han X, Nedergaard M (2006) Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 9:260–267PubMedCrossRefGoogle Scholar
  5. 5.
    Khakh BS, Sofroniew MV (2015) Diversity of astrocyte functions and phenotypes in neural circuits. Nat Neurosci 18:942–952PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kofuji P, Newman EA (2004) Potassium buffering in the central nervous system. Neuroscience 129:1045–1056PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Nagelhus EA, Ottersen OP (2013) Physiological roles of aquaporin-4 in brain. Physiol Rev 93:1543–1562PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Xie L, Kang H, Xu Q, Chen MJ, Liao Y, Thiyagarajan M, O’Donnell J, Christensen DJ, Nicholson C, Iliff JJ et al (2013) Sleep drives metabolite clearance from the adult brain. Science 342:373–377PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Pellerin L, Magistretti PJ (2012) Sweet sixteen for ANLS. J Cereb Blood Flow Metab 32:1152–1166PubMedCrossRefGoogle Scholar
  10. 10.
    Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ (1990) Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–473CrossRefGoogle Scholar
  11. 11.
    Nedergaard M (1994) Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science 263:1768–1771PubMedCrossRefGoogle Scholar
  12. 12.
    Parpura V, Basarsky TA, Liu F, Jeftinija K, Jeftinija S, Haydon PG (1994) Glutamate-mediated astrocyte-neuron signalling. Nature 369:744–747PubMedCrossRefGoogle Scholar
  13. 13.
    Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031PubMedCrossRefGoogle Scholar
  14. 14.
    Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11:227–238PubMedCrossRefGoogle Scholar
  15. 15.
    Tong X, Shigetomi E, Looger LL, Khakh BS (2013) Genetically encoded calcium indicators and astrocyte calcium microdomains. Neuroscientist 19(3):274–291PubMedCrossRefGoogle Scholar
  16. 16.
    Heim R, Tsien RY (1996) Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr Biol 6:178–182PubMedCrossRefGoogle Scholar
  17. 17.
    Miyawaki A, Llopis J, Heim R, McCaffery JM, Adams JA, Ikura M, Tsien RY (1997) Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388:882–887PubMedCrossRefGoogle Scholar
  18. 18.
    Tallini YN, Ohkura M, Choi B-R, Ji G, Imoto K, Doran R, Lee J, Plan P, Wilson J, Xin H-B, Sanbe A, Gulick J, Mathai J, Robbins J, Salama G, Nakai J, Kotlikoff MI (2006) Imaging cellular signals in the heart in vivo: Cardiac expression of the high-signal Ca2+ indicator GCaMP2. Proc Natl Acad Sci U S A 103:4753–4758PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Baubet V, Le Mouellic H, Campbell AK, Lucas-Meunier E, Fossier P, Brulet P, Brúlet P (2000) Chimeric green fluorescent protein-aequorin as bioluminescent Ca2+ reporters at the single-cell level. Proc Natl Acad Sci U S A 97:7260–7265PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Nakai J, Ohkura M, Imoto K (2001) A high signal-to-noise Ca2+ probe composed of a single green fluorescent protein. Nat Biotechnol 19:137–141CrossRefGoogle Scholar
  21. 21.
    Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Shigetomi E, Kracun S, Khakh BS (2010) Monitoring astrocyte calcium microdomains with improved membrane targeted GCaMP reporters. Neuron Glia Biol 6:183–191PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Shigetomi E, Kracun S, Sofroniew MV, Khakh BS (2010) A genetically targeted optical sensor to monitor calcium signals in astrocyte processes. Nat Neurosci 13:759–766PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Akerboom J, Chen T-W, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderón NC, Esposti F, Borghuis BG, Sun XR et al (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32:13819–13840PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300PubMedPubMedCentralGoogle Scholar
  26. 26.
    Tang W, Szokol K, Jensen V, Enger R, Trivedi CA, Hvalby O, Helm PJ, Looger LL, Sprengel R, Nagelhus EA (2015) Stimulation-evoked Ca2+ signals in astrocytic processes at hippocampal CA3-CA1 synapses of adult mice are modulated by glutamate and ATP. J Neurosci 35:3016–3021PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Szokol K, Heuser K, Tang W, Jensen V, Enger R, Bedner P, Steinhäuser C, Taubøll E, Ottersen OP, Nagelhus EA (2015) Augmentation of Ca2+ signaling in astrocytic endfeet in the latent phase of temporal lobe epilepsy. Front Cell Neurosci 9:49PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Enger R, Tang W, Vindedal GF, Jensen V, Helm PJ, Sprengel R, Looger LL, Nagelhus EA (2015) Dynamics of ionic shifts in cortical spreading depression. Cereb Cortex 25:4469–4476PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Enger R, Dukefoss DB, Tang W, Pettersen KH, Bjørnstad DM, Helm PJ, Jensen V, Sprengel R, Vervaeke K, Ottersen OP, Nagelhus EA (2017) Deletion of aquaporin-4 curtails extracellular glutamate elevation in cortical spreading depression in awake mice. Cereb Cortex 27:24–33PubMedCrossRefGoogle Scholar
  30. 30.
    Haustein MD, Kracun S, Lu X-H, Shih T, Jackson-Weaver O, Tong X, Xu J, Yang XW, O’Dell TJ, Marvin JS et al (2014) Conditions and constraints for astrocyte calcium signaling in the hippocampal mossy fiber pathway. Neuron 82:413–429PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Shigetomi E, Bushong EA, Haustein MD, Tong X, Jackson-Weaver O, Kracun S, Xu J, Sofroniew MV, Ellisman MH, Khakh BS (2013) Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses. J Gen Physiol 141:633–647PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Zlatkine P, Mehul B, Magee AI (1997) Retargeting of cytosolic proteins to the plasma membrane by the Lck protein tyrosine kinase dual acylation motif. J Cell Sci 110:673–679PubMedGoogle Scholar
  33. 33.
    Benediktsson AM, Schachtele SJ, Green SH, Dailey ME (2005) Ballistic labeling and dynamic imaging of astrocytes in organotypic hippocampal slice cultures. J Neurosci Meth 141:41–53Google Scholar
  34. 34.
    Li H, Wang X, Zhang N, Gottipati MK, Parpura V, Ding S (2014) Imaging of mitochondrial Ca2+ dynamics in astrocytes using cell-specific mitochondria-targeted GCaMP5G/6s: Mitochondrial Ca2+ uptake and cytosolic Ca2+ availability via the endoplasmic reticulum store. Cell Calcium 56:457–466PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Hirrlinger J, Scheller A, Hirrlinger PG, Kellert B, Tang W, Wehr MC, Goebbels S, Reichenbach A, Sprengel R, Rossner M, Kirchhoff F (2009) Split-Cre complementation indicates coincident activity of different genes in vivo. PLoS One 4(1):e4286PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Srinivasan R, Lu TY, Chai H, Xu J, Huang BS, Golshani P, Coppola G, Khakh BS (2016) New transgenic mouse lines for selectively targeting astrocytes and studying calcium signals in astrocyte processes in situ and in vivo. Neuron 92:1181–1195PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Zincarelli C, Soltys S, Rengo G, Rabinowitz JE (2008) Analysis of AAV serotypes 1-9 mediated gene expression and tropism in mice after systemic injection. Mol Ther 16:1073–1080PubMedCrossRefGoogle Scholar
  38. 38.
    Shevtsova Z, Malik JM, Michel U, Bahr M, Kugler S (2005) Promoters and serotypes: targeting of adeno-associated virus vectors for gene transfer in the rat central nervous system in vitro and in vivo. Exp Physiol 90:53–59PubMedCrossRefGoogle Scholar
  39. 39.
    Watakabe A, Ohtsuka M, Kinoshita M, Takaji M, Isa K, Mizukami H, Ozawa K, Isa T, Yamamori T (2015) Comparative analyses of adeno-associated viral vector serotypes 1, 2, 5, 8 and 9 in marmoset, mouse and macaque cerebral cortex. Neurosci Res 93:144–157PubMedCrossRefGoogle Scholar
  40. 40.
    Aschauer DF, Kreuz S, Rumpel S (2013) Analysis of transduction efficiency, tropism and axonal transport of AAV serotypes 1, 2, 5, 6, 8 and 9 in the mouse brain. PLoS One 8(9):e76310PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Wright JF, Zelenaia O (2011) Vector characterization methods for quality control testing of recombinant adeno-associated viruses. Methods Mol Biol 737:247–278PubMedCrossRefGoogle Scholar
  42. 42.
    Strobel B, Miller FD, Rist W, Lamla T (2015) Comparative analysis of cesium chloride- and iodixanol-based purification of recombinant adeno-associated virus (AAV) vectors for preclinical applications. Hum Gene Ther Methods 112:1–29Google Scholar
  43. 43.
    Burova E, Ioffe E (2005) Chromatographic purification of recombinant adenoviral and adeno-associated viral vectors: methods and implications. Gene Ther 12(Suppl 1):S5–S17PubMedCrossRefGoogle Scholar
  44. 44.
    Smith RH, Levy JR, Kotin RM (2009) A simplified baculovirus-AAV expression vector system coupled with one-step affinity purification yields high-titer rAAV stocks from insect cells. Mol Ther 17:1888–1896PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Mietzsch M, Broecker F, Reinhardt A, Seeberger PH, Heilbronn R, Imperiale MJ (2014) Differential adeno-associated virus serotype-specific interaction patterns with synthetic heparins and other glycans. J Virol 88(5):2991–3003PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Chen CA, Okayama H (1988) Calcium phosphate-mediated gene tranfer: a highly efficient transfection system for stably transforming cells with plasmid DNA. Biotechniques 6:632–638PubMedGoogle Scholar
  47. 47.
    McClure C, Cole KLH, Wulff P, Klugmann M, Murray AJ (2011) Production and titering of recombinant adeno-associated viral vectors. J Vis Exp (57):e3348Google Scholar
  48. 48.
    Tang W, Ehrlich I, Wolff SBE, Michalski A-M, Wölfl S, Hasan MT, Lüthi A, Sprengel R (2009) Faithful expression of multiple proteins via 2A-peptide self-processing: a versatile and reliable method for manipulating brain circuits. J Neurosci 29:8621–8629PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Berkel S, Tang W, Trevião M, Vogt M, Obenhaus HA, Gass P, Scherer SW, Sprengel R, Schratt G, Rappold GA (2012) Inherited and de novo SHANK2 variants associated with autism spectrum disorder impair neuronal morphogenesis and physiology. Hum Mol Genet 21:344–357PubMedCrossRefGoogle Scholar
  50. 50.
    Agarwal A, Wu PH, Hughes EG, Fukaya M, Tischfield MA, Langseth AJ, Wirtz D, Bergles DE (2017) Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron 93:587–605.e7PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Cetin A, Komai S, Eliava M, Seeburg PH, Osten P (2007) Stereotaxic gene delivery in the rodent brain. Nat Prot 1(6):3166Google Scholar
  52. 52.
    Wang X, Lou N, Xu Q, Tian G-F, Peng WG, Han X, Kang J, Takano T, Nedergaard M (2006) Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat Neurosci 9:816–823PubMedCrossRefGoogle Scholar
  53. 53.
    Schummers J, Yu H, Sur M (2008) Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320:1638–1643PubMedCrossRefGoogle Scholar
  54. 54.
    Schwarte LA, Zuurbier CJ, Ince C (2000) Mechanical ventilation of mice. Basic Res Cardiol 95:510–520PubMedCrossRefGoogle Scholar
  55. 55.
    Krnjević K, Randić M, Siesjö BK (1965) Cortical CO2 tension and neuronal excitability. J Physiol 176:105–122PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Tolner EA, Hochman DW, Hassinen P, Otáhal J, Gaily E, Haglund MM, Kubová H, Schuchmann S, Vanhatalo S, Kaila K (2011) Five percent CO2 is a potent, fast-acting inhalation anticonvulsant. Epilepsia 52:104–114PubMedCrossRefGoogle Scholar
  57. 57.
    Leão AAP (1944) Spreading depression of activity in the cerebral cortex. J Neurophysiol 7:359–390CrossRefGoogle Scholar
  58. 58.
    Pietrobon D, Moskowitz MA (2014) Chaos and commotion in the wake of cortical spreading depression and spreading depolarizations. Nat Rev Neurosci 15:379–393PubMedCrossRefGoogle Scholar
  59. 59.
    Somjen GG (2001) Mechanisms of spreading depression and hypoxic spreading depression-like depolarization. Physiol Rev 81:1065–1096PubMedCrossRefGoogle Scholar
  60. 60.
    Takano T, Nedergaard M (2009) Deciphering migraine. J Clin Invest 119:16–19PubMedGoogle Scholar
  61. 61.
    Dreier JP (2011) The role of spreading depression, spreading depolarization and spreading ischemia in neurological disease. Nat Med 17:439–447PubMedCrossRefGoogle Scholar
  62. 62.
    Kraig RP, Nicholson C (1978) Extracellular ionic variations during spreading depression. Neuroscience 3:1045–1059PubMedCrossRefGoogle Scholar
  63. 63.
    Takano T, Oberheim N, Cotrina ML, Nedergaard M (2009) Astrocytes and ischemic injury. Stroke 40:S8–S12PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Thrane AS, Rangroo Thrane V, Zeppenfeld D, Lou N, Xu Q, Nagelhus EA, Nedergaard M (2012) General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex. Proc Natl Acad Sci U S A 109:18974–18979PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Ding F, O’Donnell J, Thrane AS, Zeppenfeld D, Kang H, Xie L, Wang F, Nedergaard M (2013) α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54:387–394CrossRefGoogle Scholar
  66. 66.
    Nimmerjahn A, Mukamel EA, Schnitzer MJ (2009) Motor behavior activates Bergmann glial networks. Neuron 62:400–412Google Scholar
  67. 67.
    Srinivasan R, Huang BS, Venugopal S, Johnston AD, Chai H, Zeng H, Golshani P, Khakh BS (2015) Ca2+ signaling in astrocytes from Ip3r2−/− mice in brain slices and during startle responses in vivo. Nat Neurosci 18:708–717PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Danskin B, Denman D, Valley M, Ollerenshaw D, Williams D, Groblewski P, Reid C, Olsen S, Waters J (2015) Optogenetics in mice performing a visual discrimination task: Measurement and suppression of retinal activation and the resulting behavioral artifact. PLoS One 10(12):e0144760PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Huber D, Gutnisky DA, Peron S, O’Connor DH, Wiegert JS, Tian L, Oertner TG, Looger LL, Svoboda K (2012) Multiple dynamic representations in the motor cortex during sensorimotor learning. Nature 484:473–478PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Dombeck DA, Harvey CD, Tian L, Looger LL, Tank DW (2010) Functional imaging of hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13:1433–1440PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Kaifosh P, Zaremba JD, Danielson NB, Losonczy A (2014) SIMA: Python software for analysis of dynamic fluorescence imaging data. Front Neuroinform 8:80PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Emiliani V, Cohen AE, Deisseroth K, Hausser M (2015) All-optical interrogation of neural circuits. J Neurosci 35:13917–13926PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Bindocci E, Savtchouk I, Liaudet N, Becker D, Carriero G, Volterra A (2017) Three-dimensional Ca2+ imaging advances understanding of astrocyte biology. Science 356(6339):eaai8185PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rune Enger
    • 1
    • 2
  • Rolf Sprengel
    • 3
  • Erlend A. Nagelhus
    • 1
    • 2
    Email author
  • Wannan Tang
    • 1
    • 2
  1. 1.Oslo University Hospital, Department of NeurologyOsloNorway
  2. 2.GliaLab and Letten Centre, Division of Physiology, Department of Molecular Medicine, Institute of Basic Medical Sciences, University of OsloOsloNorway
  3. 3.Research Group of the Max Planck Institute for Medical Research, Institute for Anatomy and Cell Biology, Heidelberg UniversityHeidelbergGermany

Personalised recommendations