Advertisement

Antibodies to NMDA Receptors in Cerebral and Spinal Cord Infarctions

  • G. V. Ponomarev
  • E. V. Alexandrova
  • Svetlana A. Dambinova
  • D. S. Asyutin
  • N. A. Konovalov
  • A. A. Skoromets
Protocol
Part of the Neuromethods book series (NM, volume 147)

Abstract

The present chapter provides a minireview of potential markers for assessment of cerebral and spinal cord infarctions. It has been suggested that cerebral and spinal cord infarction might be assessed using antibodies to immune active fragments of glutamate receptor biomarkers according to gradual presentation of symptoms and structural alterations defined by neuroimaging in certain brain and spinal cord structures. Antibodies to NR2 subtype of N-methyl-d-aspartate receptors (NMDAR) are detected in patients with acute and chronic conditions. The biomarker revealed ischemic events in recurrent cerebral and chronic spinal cord infarctions and correlated with lesions presence. NR2 antibodies might improve diagnostic certainty of infarctions in cervical and thoracic region of the spinal cord.

Key words

Spinal cord Ischemia Injury Biomarkers Glutamate NMDA NR2 Antibodies 

References

  1. 1.
    Fanning JP, Wong AA, Fraser JF (2014) The epidemiology of silent brain infarction: a systematic review of population-based cohorts. BMC Med 12:119.  https://doi.org/10.1186/s12916-014-0119-0CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Nasr DM, Rabinstein A (2017) Spinal cord infarcts: risk factors, management, and prognosis. Curr Treat Options Neurol 19:28CrossRefGoogle Scholar
  3. 3.
    Barbon A, Fumagalli F, Caracciolo L, Madaschi L, Lesma E, Mora C, Carelli S, Slotkin TA, Racagni G, Di Giulio AM, Gorio A, Barlati S (2010) Acute spinal cord injury persistently reduces R/G RNA editing of AMPA receptors. J Neurochem 114(2):397–407.  https://doi.org/10.1111/j.1471-4159.2010.06767.xCrossRefPubMedGoogle Scholar
  4. 4.
    Hansen KB, Yi F, Perszyk RE, Menniti FS, Traynelis SF (2017) NMDA receptors in the central nervous system. Methods Mol Biol 1677:1–80.  https://doi.org/10.1007/978-1-4939-7321-71CrossRefPubMedGoogle Scholar
  5. 5.
    Robertson CE, Brown RD Jr, Wijdicks EF, Rabinstein AA (2012) Recovery after spinal cord infarcts: long-term outcome in 115 patients. Neurology 78(2):114–121.  https://doi.org/10.1212/WNL.0b013e31823efc93CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rubin MN, Rabinstein AA (2013) Vascular diseases of the spinal cord. Neurol Clin 31(1):153–181.  https://doi.org/10.1016/j.ncl.2012.09.004CrossRefPubMedGoogle Scholar
  7. 7.
    Heldner MR, Arnold M, Nedeltchev K, Gralla J, Beck J, Fischer U (2012) Vascular diseases of the spinal cord: a review. Curr Treat Options Neurol 14(6):509–520.  https://doi.org/10.1007/s11940-012-0190-9CrossRefPubMedGoogle Scholar
  8. 8.
    Nedeltchev K, Loher TJ, Stepper F, Arnold M, Schroth G, Mattle HP, Sturzenegger M (2004) Long-term outcome of acute spinal cord ischemia syndrome. Stroke 35(2):560–565.  https://doi.org/10.1161/01.STR.0000111598.78198.ECCrossRefPubMedGoogle Scholar
  9. 9.
    Anderson SE, Boesch C, Zimmermann H, Busato A, Hodler J, Bingisser R, Ulbrich EJ, Nidecker A, Buitrago-Téllez CH, Bonel HM, Heini P, Schaeren S, Sturzenegger M (2012) Are there cervical spine findings at MR imaging that are specific to acute symptomatic whiplash injury? A prospective controlled study with four experienced blinded readers. Radiology 262(2):567–575.  https://doi.org/10.1148/radiol.11102115CrossRefPubMedGoogle Scholar
  10. 10.
    Vargas MI, Gariani J, Sztajzel R, Barnaure-Nachbar I, Delattre BM, Lovblad KO, Dietemann JL (2015) Spinal cord ischemia: practical imaging tips, pearls, and pitfalls. AJNR Am J Neuroradiol 36(5):825–830.  https://doi.org/10.3174/ajnr.A4118CrossRefPubMedGoogle Scholar
  11. 11.
    Lien C-Y, Lui CC, Lu CH, Chang WN (2014) Management of a case with misdiagnosed spinal dural arterio-venous fistula. Acta Neurol Taiwanica 23(1):29–35. PMID: 24833213Google Scholar
  12. 12.
    Weidauer S, Nichtweiss M, Hattingen E, Berkefeld J (2015) Spinal cord ischemia: aetiology, clinical syndromes and imaging features. Neuroradiology 57(3):241–257CrossRefGoogle Scholar
  13. 13.
    Szwedowski D, Walecki J (2014) Spinal cord injury without radiographic abnormality (SCIWORA) – clinical and radiological aspects. Pol J Radiol 79:461–464.  https://doi.org/10.12659/PJR.890944CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Weissman JD, Khunteev GA, Heath R, Dambinova SA (2011) NR2 antibodies: risk assessment of transient ischemic attack (TIA)/stroke in patients with history of isolated and multiple cerebrovascular events. J Neurol Sci 300(1–2):97–102CrossRefGoogle Scholar
  15. 15.
    Ponomarev GV, Dambinova SA, Skoromets AA (2018) Neurotoxicity in spinal cord impairments. In: Peplow PV, Dambinova SA, Gennarelli TA, Martinez B (eds) Acute brain impairment: scientific discoveries and translational research. Royal Society of Chemistry, London, pp 198–213Google Scholar
  16. 16.
    Kamel H, Iadecola C (2012) Brain-immune interactions and ischemic stroke: clinical implications. Arch Neurol 69(5):576–581.  https://doi.org/10.1001/archneurol.2011.3590CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Amantea D, Micieli G, Tassorelli C, Cuartero MI, Ballesteros I, Certo M, Moro MA, Lizasoain I, Bagetta G (2015) Rational modulation of the innate immune system for neuroprotection in ischemic stroke. Front Neurosci 9:147.  https://doi.org/10.3389/fnins.2015.00147CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rayasam A, Hsu M, Kijak JA, Kissel L, Hernandez G, Sandor M, Fabry Z (2018) Immune responses in stroke: how the immune system contributes to damage and healing after stroke and how this knowledge could be translated to better cures? Immunology 154(3):363–376.  https://doi.org/10.1111/imm.12918CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Fanning JP, See Hoe LE, Passmore MR, Barnett AG, Rolfe BE, Millar JE, Wesley AJ, Suen J, Fraser JF (2018) Differential immunological profiles herald magnetic resonance imaging-defined perioperative cerebral infarction. Ther Adv Neurol Disord 11:1756286418759493.  https://doi.org/10.1177/1756286418759493CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lu K, Cho CL, Liang CL, Chen SD, Liliang PC, Wang SY et al (2007) Inhibition of the MEK/ERK pathway reduces microglial activation and interleukin-1-beta expression in spinal cord ischemia/reperfusion injury in rats. J Thorac Cardiovasc Surg 133:934–941CrossRefGoogle Scholar
  21. 21.
    Matsumoto S, Matsumoto M, Yamashita A, Ohtake K, Ishida K, Morimoto Y et al (2003) The temporal profile of the reaction of microglia, astrocytes, and macrophages in the delayed onset paraplegia after transient spinal cord ischemia in rabbits. Anesth Analg 96:1777–1784CrossRefGoogle Scholar
  22. 22.
    Lin A, Tran T, Bluml S, Merugumala S, Liao HJ, Ross BD (2012) Guidelines for acquiring and reporting clinical neurospectroscopy. Semin Neurol 32:432–453.  https://doi.org/10.1055/s-0032-1331814CrossRefPubMedGoogle Scholar
  23. 23.
    Granger DN, Kvietys PR (2017) Reperfusion therapy – what’s with the obstructed, leaky and broken capillaries? Pathophysiology 24(4):213–228.  https://doi.org/10.1016/j.pathophys.2017.09.003CrossRefPubMedGoogle Scholar
  24. 24.
    Faghihi R, Zeinali-Rafsanjani B, Mosleh-Shirazi M-A, Saeedi-Moghadam M, Lotfi M, Jalli R, Iravani V (2017) Magnetic resonance spectroscopy and its clinical applications: a review. J Med Imaging Radiation Sci 48:233–253eCrossRefGoogle Scholar
  25. 25.
    Lambertsen KL, Biber K, Finsen B (2012) Inflammatory cytokines in experimental and human stroke. JCerebBlood Flow Metab 32:1677–1698.  https://doi.org/10.1038/jcbfm.2012.88CrossRefGoogle Scholar
  26. 26.
    Ross AJ, Sachdev PS, Wen W et al (2006) Prediction of cognitive decline after stroke using proton magnetic resonance spectroscopy. J Neurol Sci 251(1–2):62–69CrossRefGoogle Scholar
  27. 27.
    Lin A-Q, Shou J-X, Li X-Y, Ma L, Zhu X-H (2014) Metabolic changes in acute cerebral infarction: findings from proton magnetic resonance spectroscopic imaging. Exp Ther Med 7(2):451–455CrossRefGoogle Scholar
  28. 28.
    Santhakumari R, Reddy IY, Archana R (2014) Effect of type 2 diabetes mellitus on brain metabolites by using proton magnetic resonance spectroscopy-A systematic review. Int J Pharm Bio Sci 5(4):1118Google Scholar
  29. 29.
    Naveen V, Vengamma B, Mohan A, Vanajakshamma V (2015) N-Terminal pro-brain natriuretic peptide levels and short-term prognosis in acute ischemic stroke. Ann Indian Acad Neurol 18(4):435–440.  https://doi.org/10.4103/0972-2327.165478CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chen X, Zhan X, Chen M, Lei H, Wang Y, Wei D, Jiang X (2012) The prognostic value of combined NT-pro-BNP levels and National Institutes of Health Stroke Scale (NIHSS) scores in patients with acute ischemic stroke. Intern Med 51(20):2887–2892CrossRefGoogle Scholar
  31. 31.
    Li J, Gu C, Li D, Chen L, Lu Z, Zhu L, Huang H (2018) Effects of serum N-terminal pro B-type natriuretic peptide and D-dimerlevels on patients with acute ischemic stroke. Pak J Med Sci 34(4):994–998.  https://doi.org/10.12669/pjms.344.15432CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Nambi V, Hoogeveen RC, Chambless L, Hu Y, Bang H, Coresh J, Ni H, Boerwinkle E, Mosley T, Sharrett R, Folsom AR, Ballantyne CM (2009) Lipoprotein-associated phospholipase A2 and high-sensitivity C-reactive protein improve the stratification of ischemic stroke risk in the Atherosclerosis Risk in Communities (ARIC) study. Stroke 40(2):376–381.  https://doi.org/10.1161/STROKEAHA.107.513259CrossRefPubMedGoogle Scholar
  33. 33.
    Zhao M, Wang X, He M, Qin X, Tang G, Huo Y, Li J, Fu J, Huang X, Cheng X, Wang B, Hou FF, Sun N, Cai Y (2017) Homocysteine and stroke risk: Modifying effect of methylenetetrahydrofolate reductase C677T polymorphism and folic acid intervention. Stroke 48(5):1183–1190.  https://doi.org/10.1161/STROKEAHA.116.015324CrossRefPubMedGoogle Scholar
  34. 34.
    Kaplan E (2003) Association between homocyst(e)ine levels and risk of vascular events. Drugs Today 39:175–192CrossRefGoogle Scholar
  35. 35.
    Roach ES, Bettermann K, Jose Biller J (2010) Toole’s cerebrovascular disorders, 6th edn. Cambridge University Press, Cambridge, p 422CrossRefGoogle Scholar
  36. 36.
    Laskowitz DT, Kasner SE, Saver J, Remmel KS, Jauch EC (2009) BRAIN Study Group. Clinical usefulness of a biomarker-based diagnostic test for acute stroke: The Biomarker Rapid Assessment in Ischemic Injury (BRAIN) study. Stroke 40:77–85.  https://doi.org/10.1161/STROKEAHA.108.516377CrossRefPubMedGoogle Scholar
  37. 37.
    Ren C, Kobeissy F, Alawieh A, Li N, Li N, Zibara K, Zoltewicz S, Guingab-Cagmat J, Larner SF, Ding Y, Hayes RL, Ji X, Mondello S (2016) Assessment of serum UCH-L1 and GFAP in acute stroke patients. Sci Rep 14(6):24588.  https://doi.org/10.1038/srep24588CrossRefGoogle Scholar
  38. 38.
    Bokesch PM, Izykenova GA, Justice JB, Easley KA, Dambinova SA (2006) NMDA receptor antibodies predict adverse neurological outcome after cardiac surgery in high-risk patients. Stroke 37:1432–1436CrossRefGoogle Scholar
  39. 39.
    Skitek M, Jerin A (2013) N-methyl-D-aspartate–receptor antibodies, S100B protein, and neuron-specific enolase before and after cardiac surgery: association with ischemic brain injury and erythropoietin prophylaxis. Lab Med 44(1):56–62CrossRefGoogle Scholar
  40. 40.
    Kidher E, Patel VM, Nihoyannopoulos P, Anderson JR, Chukwuemeka A, Francis DP, Ashrafian H, Athanasiou T (2014) Aortic stiffness is related to the ischemic brain injury biomarker N-methyl-D-aspartate receptor antibody levels in aortic valve replacement. Neurol Res Int 2014:970793.  https://doi.org/10.1155/2014/970793CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Hock A, Henning A, Boesiger P, Kollias SS (2013) 1H-MR spectroscopy in the human spinal cord. AJNR Am J Neuroradiol 34:1682–1689.  https://doi.org/10.3174/ajnr.A3342CrossRefPubMedGoogle Scholar
  42. 42.
    Wyss PO, Hock A, Kollias S (2017) The application of human spinal cord magnetic resonance spectroscopy to clinical studies: a review. Semin Ultrasound CT MR 38(2):153–162.  https://doi.org/10.1053/j.sult.2016.07.005CrossRefPubMedGoogle Scholar
  43. 43.
    Salamon N, Ellingson BM, Nagarajan R, Gebara N, Thomas A, Holly LT (2013) Proton magnetic resonance spectroscopy of human cervical spondylosis at 3 T. Spinal Cord 51:558–563.  https://doi.org/10.1038/sc.2013.31CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Holly LT, Freitas B, McArthur DL, Salamon N (2009) Proton magnetic resonance spectroscopy to evaluate spinal cord axonal injury in cervical spondylotic myelopathy. J Neurosurg Spine 10:194–200.  https://doi.org/10.3171/2008CrossRefPubMedGoogle Scholar
  45. 45.
    Taha Ali TF, Badawy AE (2013) Feasibility of 1H-MR spectroscopy in evaluation of cervical spondylotic myelopathy. Egypt J Radiol Nucl Med 44(1):93–99.  https://doi.org/10.1016/j.ejrnm.2012.11.001CrossRefGoogle Scholar
  46. 46.
    Ellingson BM, Salamon N, Hardy AJ, Holly LT (2015) Prediction of neurological impairment in cervical spondylotic myelopathy using a combination of diffusion MRI and proton MR spectroscopy. PLoS One 10(10):e0139451.  https://doi.org/10.1371/journal.pone.0139451CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Hasturk A, Atalay B, Calisaneller T, Ozdemir O, Oruckaptan H, Altinors N (2009) Analysis of serum pro-inflammatory cytokine levels after rat spinal cord ischemia/reperfusion injury and correlation with tissue damage. Turk Neurosurg 19:353–359PubMedGoogle Scholar
  48. 48.
    Sivadasan A, Alexander M, Patil AK, Mani S (2013) Spectrum of clinico-radiological findings in spinal cord infarction: report of three cases and review of the literature. Ann Indian Acad Neurol 16(2):190–193CrossRefGoogle Scholar
  49. 49.
    Bede P, Finegan E, Hardiman O (2017) From pneumomyelography to cord tractography: historical perspectives on spinal imaging. Future Neurol 12(3):121–124.  https://doi.org/10.2217/fnl-2017-0018CrossRefGoogle Scholar
  50. 50.
    Guéz M, Hildingsson C, Rosengren L, Karlsson K, Toolanen G (2003) Nervous tissue damage markers in cerebrospinal fluid after cervical spine injuries and whiplash trauma. J Neurotrauma 20(9):853–858CrossRefGoogle Scholar
  51. 51.
    Winnerkvist A, Anderson RE, Hansson LO, Rosengren L, Estrera AE, Huynh TT, Porat EE, Safi HJ (2007) Multilevel somatosensory evoked potentials and cerebrospinal proteins: indicators of spinal cord injury in thoracoabdominal aortic aneurysm surgery. Eur J Cardiothorac Surg 31(4):637–642CrossRefGoogle Scholar
  52. 52.
    Stanca DM, Mărginean IC, Soriţău O, Dragoş C, Mărginean M, Mureşanu DF, Vester JC, Rafila A (2015) GFAP and antibodies against NMDA receptor subunit NR2 as biomarkers for acute cerebrovascular diseases. J Cell Mol Med 19(9):2253–2261.  https://doi.org/10.1111/jcmm.12614
  53. 53.
    Hergenroeder GW, Redell JB, Choi HA, Schmitt L, Donovan W, Francisco GE, Schmitt K, Moore AN, Dash PK (2018) Increased levels of circulating glial fibrillary acidic protein and collapsin response mediator protein-2 autoantibodies in the acute stage of spinal cord injury predict the subsequent development of neuropathic pain. J Neurotrauma.  https://doi.org/10.1089/neu.2018.5675
  54. 54.
    Martirosyan NL, Carotenuto A, Patel AA, Kalani MY, Yagmurlu K, Lemole GM Jr, Preul MC, Theodore N (2016) The role of microRNA markers in the diagnosis, treatment, and outcome prediction of spinal cord injury. Front Surg 8(3):56Google Scholar
  55. 55.
    Voloshyna I, Krivenko V, Voloshyn M, Deynega V (2016) Serum NR2 peptide antibodies and stroke recurrence in high-risk hypertensives. J Hypertens 34(Suppl 1):PS 02–PS 37Google Scholar
  56. 56.
    González-García S, González-Quevedo A, Hernandez-Diaz Z, Alvarez Camino L, Peña-Sanchez M, Cordero-Eiriz A, Brown M, Gaya JA, Betancourt-Losa M, Fernandez-Almirall I, Menendez-Sainz MC, Fernandez-Carriera R (2017) Circulating autoantibodies against the NR2 peptide of the NMDA receptor are associated with subclinical brain damage in hypertensive patients with other pre-existing conditions for vascular risk. J Neurol Sci 375:324–330.  https://doi.org/10.1016/j.jns.2017.02.028CrossRefPubMedGoogle Scholar
  57. 57.
    Dambinova SA, Khounteev GA, Skorometz AA (2002) Multiple panel of biomarkers for TIA/stroke evaluation. Stroke 33(5):1181–1182CrossRefGoogle Scholar
  58. 58.
    Dambinova SA, Khounteev GA, Izykenova GA, Zavolokov IG, Ilyukhina AY, Skoromets AA (2003) Blood test detecting autoantibodies to N-methyl-D-aspartate neuroreceptors for evaluation of patients with transient ischemic attack and stroke. Clin Chem 49(10):1752–1762CrossRefGoogle Scholar
  59. 59.
    Vincent A, Bien CG, Irani SR, Waters P (2011) Autoantibodies associated with diseases of the CNS: new developments and future challenges. Lancet Neurol 10:759–772.  https://doi.org/10.1016/S1474-4422(11)70096-5CrossRefPubMedGoogle Scholar
  60. 60.
    Arvanitakis Z, Brey RL, Rand JH, Schneider JA, Leurgans SE, Yu L, Buchman AS, Arfanakis K, Fleischman DA, Boyle PA, Bennett DA, Levine SR (2013) Antiphospholipid antibodies, brain infarcts, and cognitive and motor decline in aging (ABICMA): design of a community-based, longitudinal, clinical-pathological study. Neuroepidemiology 40(2):73–84.  https://doi.org/10.1159/000342761CrossRefPubMedGoogle Scholar
  61. 61.
    Hacohen Y, Wright S, Gadian J, Vincent A, Lim M, Wassmer E, Lin JP (2016) N-methyl-d-aspartate (NMDA) receptor antibodies encephalitis mimicking an autistic regression. Dev Med Child Neurol 58:1092–1094.  https://doi.org/10.1111/dmcn.13169CrossRefPubMedGoogle Scholar
  62. 62.
    Di Marco B, Bonaccorso CM, Aloisi E, D'Antoni S, Catania MV (2016) Neuro-inflammatory mechanisms in developmental disorders associated with intellectual disability and autism spectrum disorder: a neuro-immune perspective. CNS Neurol Disord Drug Targets 15:448–463.  https://doi.org/10.2174/1871527315666160321105039CrossRefPubMedGoogle Scholar
  63. 63.
    Mehregan H, Najmabadi H, Kahrizi K (2016) Genetic studies in intellectual disability and behavioral impairment. Arch Iran Med 19:363–375. doi:10.0161905/AIM.0012PubMedGoogle Scholar
  64. 64.
    Hoffmann C, Zong S, Mané-Damas M, Molenaar P, Losen M, Martinez-Martinez P (2016) Autoantibodies in neuropsychiatric disorders. Antibodies 5:9.  https://doi.org/10.3390/antib5020009CrossRefPubMedCentralGoogle Scholar
  65. 65.
    Nibber A, Clover L, Pettingill P, Waters P, Elger CE, Bien CG, Vincent A, Lang B (2016) Antibodies to AMPA receptors in Rasmussen’s encephalitis. Eur J Paediatr Neurol 20:222–227.  https://doi.org/10.1016/j.ejpn.2015.12.011CrossRefPubMedGoogle Scholar
  66. 66.
    Wang H, Zhang XM, Tomiyoshi G, Nakamura R, Shinmen N, Kuroda H, Kimura R, Mine S, Kamitsukasa I, Wada T, Aotsuka A, Yoshida Y, Kobayashi E, Matsutani T, Iwadate Y, Sugimoto K, Mori M, Uzawa A, Muto M, Kuwabara S, Takemoto M, Kobayashi K, Kawamura H, Ishibashi R, Yokote K, Ohno M, Chen PM, Nishi E, Ono K, Kimura T, Machida T, Takizawa H, Kashiwado K, Shimada H, Ito M, Goto KI, Iwase K, Ashino H, Taira A, Arita E, Takiguchi M, Hiwasa T (2017) Association of serum levels of antibodies against MMP1, CBX1, and CBX5 with transient ischemic attack and cerebral infarction. Oncotarget 9(5):5600–5613.  https://doi.org/10.18632/oncotarget.23789CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Bala MM, Paszek E, Lesniak W, Wloch-Kopec D, Jasinska K, Undas A (2018) Antiplatelet and anticoagulant agents for primary prevention of thrombosis in individuals with antiphospholipid antibodies. Cochrane Database Syst Rev 7:CD012534.  https://doi.org/10.1002/14651858.CD012534.pub2CrossRefPubMedGoogle Scholar
  68. 68.
    Dambinova SA (2008) Biomarkers for transient ischemic attack (TIA) and ischemic stroke. Clin Lab Int 32:7–11. http://www.clinlabint.com/fileadmin/pdf/digital_issues_archives/CLI_Nov08.pdfGoogle Scholar
  69. 69.
    Gusev EI, Skvortsova VI (2001) Cerebral ischemia. Meditsina Publishers, Moscow, pp 54–60Google Scholar
  70. 70.
    Ponomarev GV, Lalajan NV, Dambinova SA, Skoromets AA (2018) The neurotoxicity biomarkers as potential indicators of spinal cord ischemia. J Neurol Psychiatry (Russian) 2:28–33.  https://doi.org/10.17116/jnevro20181182152-57CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • G. V. Ponomarev
    • 1
  • E. V. Alexandrova
    • 2
  • Svetlana A. Dambinova
    • 3
    • 4
  • D. S. Asyutin
    • 2
  • N. A. Konovalov
    • 2
  • A. A. Skoromets
    • 1
  1. 1.Pavlov First Saint Petersburg State Medical UniversitySt. PetersburgRussia
  2. 2.Burdenko National Science and Practical Centre for NeurosurgeryMoscowRussia
  3. 3.Brain Biomarkers Research LabEmory Decatur Hospital, Emory HealthcareDecaturUSA
  4. 4.Institute of PharmacyI.M. Sechenov First Moscow State Medical UniversityMoscowRussia

Personalised recommendations