Advertisement

Quantification of mRNA Turnover in Living Cells: A Pipeline for TREAT Data Analysis

  • Franka Voigt
  • Jan Eglinger
  • Jeffrey A. ChaoEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2038)

Abstract

mRNA turnover plays an important role in the regulation of post-transcriptional gene expression. While many protein factors involved in mRNA degradation have been identified, we still lack a basic understanding of the principles that regulate the spatiotemporal dynamics of mRNA turnover within single cells. To overcome this limitation, we have developed the TREAT biosensor, which allows for discrimination of intact reporter transcripts and stabilized decay intermediates using single RNA imaging. Here, we present an image analysis pipeline that performs semiautomated detection and tracking of individual mRNA particles. It colocalizes tracks and applies the colocalization information to quantify the number of intact transcripts and degradation intermediates. Based on the analysis of control data, the workflow further determines detection efficiencies and uses them to correct RNA particle numbers.

Key words

mRNA turnover TREAT MS2/PP7 stem-loops Fluorescence microscopy Live cell imaging Single-molecule 

Notes

Acknowledgments

The authors would like to thank all members of the Chao lab for their joint efforts in developing the TREAT assay. In particular, we thank Ivana Horvathova for generation of the reporter transcripts. We further thank the Facility for Advanced Imaging and Microscopy at FMI for data acquisition and analysis support. Research in the Chao lab is funded by the Novartis Research Foundation (J.A.C.), a Swiss National Science Foundation (SNF) grant 31003A_182314 (J.A.C.), the SNF-NCCR RNA & Disease (J.A.C.), and an SNF Marie Heim-Vögtlin fellowship (F.V.).

References

  1. 1.
    Schoenberg DR, Maquat LE (2012) Regulation of cytoplasmic mRNA decay. Nat Rev Genet 13(4):246–259.  https://doi.org/10.1038/nrg3160CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Chang CT, Bercovich N, Loh B, Jonas S, Izaurralde E (2014) The activation of the decapping enzyme DCP2 by DCP1 occurs on the EDC4 scaffold and involves a conserved loop in DCP1. Nucleic Acids Res 42(8):5217–5233.  https://doi.org/10.1093/nar/gku129CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Horvathova I, Voigt F, Kotrys AV, Zhan Y, Artus-Revel CG, Eglinger J, Stadler MB, Giorgetti L, Chao JA (2017) The dynamics of mRNA turnover revealed by single-molecule imaging in single cells. Mol Cell 68(3):615–625 e619.  https://doi.org/10.1016/j.molcel.2017.09.030CrossRefPubMedGoogle Scholar
  4. 4.
    Chapman EG, Costantino DA, Rabe JL, Moon SL, Wilusz J, Nix JC, Kieft JS (2014) The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production. Science 344(6181):307–310.  https://doi.org/10.1126/science.1250897CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Boehm V, Gerbracht JV, Marx MC, Gehring NH (2016) Interrogating the degradation pathways of unstable mRNAs with XRN1-resistant sequences. Nat Commun 7:13691.  https://doi.org/10.1038/ncomms13691CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wu B, Miskolci V, Sato H, Tutucci E, Kenworthy CA, Donnelly SK, Yoon YJ, Cox D, Singer RH, Hodgson L (2015) Synonymous modification results in high-fidelity gene expression of repetitive protein and nucleotide sequences. Genes Dev 29(8):876–886.  https://doi.org/10.1101/gad.259358.115CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Weidenfeld I, Gossen M, Low R, Kentner D, Berger S, Gorlich D, Bartsch D, Bujard H, Schonig K (2009) Inducible expression of coding and inhibitory RNAs from retargetable genomic loci. Nucleic Acids Res 37(7):e50.  https://doi.org/10.1093/nar/gkp108CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z, Revyakin A, Patel R, Macklin JJ, Normanno D, Singer RH, Lionnet T, Lavis LD (2015) A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat Methods 12(3):244–250,. 243 p following 250.  https://doi.org/10.1038/nmeth.3256CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682.  https://doi.org/10.1038/nmeth.2019CrossRefPubMedGoogle Scholar
  10. 10.
    Tinevez JY, Perry N, Schindelin J, Hoopes GM, Reynolds GD, Laplantine E, Bednarek SY, Shorte SL, Eliceiri KW (2017) TrackMate: an open and extensible platform for single-particle tracking. Methods 115:80–90.  https://doi.org/10.1016/j.ymeth.2016.09.016CrossRefPubMedGoogle Scholar
  11. 11.
    Dietz C, Berthold MR (2016) KNIME for open-source bioimage analysis: a tutorial. Adv Anat Embryol Cell Biol 219:179–197.  https://doi.org/10.1007/978-3-319-28549-8_7CrossRefPubMedGoogle Scholar
  12. 12.
    Voigt F, Gerbracht JV, Boehm V, Horvathova I, Eglinger J, Chao JA, Gehring NH (2019) Detection and quantification of RNA decay intermediates using XRN1-resistant reporter transcripts. Nat Protoc 14:1603–1633CrossRefGoogle Scholar
  13. 13.
    Voigt F, Eglinger J, Chao JA (2018) Detection of the first round of translation: the TRICK assay. Methods Mol Biol 1649:373–384.  https://doi.org/10.1007/978-1-4939-7213-5_25CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Friedrich Miescher Institute for Biomedical ResearchBaselSwitzerland

Personalised recommendations