Visualization of Endogenous Transcription Factors in Single Cells Using an Antibody Electroporation-Based Imaging Approach

  • Sascha ConicEmail author
  • Dominique Desplancq
  • Alexia Ferrand
  • Nacho Molina
  • Etienne Weiss
  • László ToraEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2038)


In this chapter, we describe an antibody electroporation-based imaging approach that allows for precise imaging and quantification of endogenous transcription factor (i.e., RNA Polymerase II) distributions in single cells using 3D structured illumination microscopy (3D-SIM). The labeling is achieved by the efficient and harmless delivery of fluorescent dye-conjugated antibodies into living cells and the specific binding of these antibodies to the targeted factors. Our step-by-step protocol describes the procedure of the labeling of the specific antibodies, their electroporation into living cells, the sample preparation and 3D-SIM imaging as well as the postimaging analyses of the labeled endogenous transcription factors to obtain information about their nuclear distribution as well as their function. This protocol can be applied to a plethora of endogenous nuclear factors by using target specific noninhibiting antibodies.

Key words

Antibodies Antibody delivery Single cells Endogenous proteins RNA polymerase II Transcription Imaging Nucleus Factor distribution 3D structured illumination microscopy (3D-SIM) 



This work was supported by funds from CNRS, INSERM, University of Strasbourg, Ligue Régionale contre le Cancer (CCIRGE-BFC) (to EW), by the European Research Council (ERC) Advanced grant (ERC-2013-340551, Birtoaction) (to LT) and a grant ANR-10-LABX-0030-INRT, a French State fund managed by the Agence Nationale de la Recherche under the frame program Investissements d’Avenir ANR-10-IDEX-0002-02 (to IGBMC).


  1. 1.
    Godin AG, Lounis B, Cognet L (2014) Super-resolution microscopy approaches for live cell imaging. Biophys J 107(8):1777–1784. Scholar
  2. 2.
    Ellenberg J, Lippincott-Schwartz J, Presley JF (1999) Dual-colour imaging with GFP variants. Trends Cell Biol 9(2):52–56CrossRefGoogle Scholar
  3. 3.
    Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313(5793):1642–1645. Scholar
  4. 4.
    Schneider AF, Hackenberger CP (2017) Fluorescent labelling in living cells. Curr Opin Biotechnol 48:61–68. Scholar
  5. 5.
    Burgess A, Lorca T, Castro A (2012) Quantitative live imaging of endogenous DNA replication in mammalian cells. PLoS One 7(9):e45726. Scholar
  6. 6.
    Rothbauer U, Zolghadr K, Tillib S, Nowak D, Schermelleh L, Gahl A, Backmann N, Conrath K, Muyldermans S, Cardoso MC, Leonhardt H (2006) Targeting and tracing antigens in live cells with fluorescent nanobodies. Nat Methods 3(11):887–889. Scholar
  7. 7.
    Cassimeris L, Guglielmi L, Denis V, Larroque C, Martineau P (2013) Specific in vivo labeling of tyrosinated alpha-tubulin and measurement of microtubule dynamics using a GFP tagged, cytoplasmically expressed recombinant antibody. PLoS One 8(3):e59812. Scholar
  8. 8.
    Freund G, Desplancq D, Stoessel A, Weinsanto R, Sibler AP, Robin G, Martineau P, Didier P, Wagner J, Weiss E (2014) Generation of an intrabody-based reagent suitable for imaging endogenous proliferating cell nuclear antigen in living cancer cells. J Mol Recognit 27(9):549–558. Scholar
  9. 9.
    Traenkle B, Rothbauer U (2017) Under the microscope: single-domain antibodies for live-cell imaging and super-resolution microscopy. Front Immunol 8:1030. Scholar
  10. 10.
    Renaud E, Martineau P, Guglielmi L (2017) Solubility characterization and imaging of intrabodies using GFP-fusions. Methods Mol Biol 1575:165–174. Scholar
  11. 11.
    Manders EM, Kimura H, Cook PR (1999) Direct imaging of DNA in living cells reveals the dynamics of chromosome formation. J Cell Biol 144(5):813–821CrossRefGoogle Scholar
  12. 12.
    Teng KW, Ishitsuka Y, Ren P, Youn Y, Deng X, Ge P, Belmont AS, Selvin PR (2017) Labeling proteins inside living cells using external fluorophores for microscopy. eLife 5.
  13. 13.
    Courtete J, Sibler AP, Zeder-Lutz G, Dalkara D, Oulad-Abdelghani M, Zuber G, Weiss E (2007) Suppression of cervical carcinoma cell growth by intracytoplasmic codelivery of anti-oncoprotein E6 antibody and small interfering RNA. Mol Cancer Ther 6(6):1728–1735. Scholar
  14. 14.
    Conic S, Desplancq D, Ferrand A, Fischer V, Heyer V, Reina San Martin B, Pontabry J, Oulad-Abdelghani M, Babu NK, Wright GD, Molina N, Weiss E, Tora L (2018) Imaging of native transcription factors and histone phosphorylation at high resolution in live cells. J Cell Biol 217(4):1537–1552. Scholar
  15. 15.
    Freund G, Sibler AP, Desplancq D, Oulad-Abdelghani M, Vigneron M, Gannon J, Van Regenmortel MH, Weiss E (2013) Targeting endogenous nuclear antigens by electrotransfer of monoclonal antibodies in living cells. MAbs 5(4):518–522. Scholar
  16. 16.
    Conic S, Desplancq D, Tora L, Weiss E (2018) Electroporation of labeled antibodies to visualize endogenous proteins and posttranslational modifications in living metazoan cell types. Bio Protoc 8(21).
  17. 17.
    Desplancq D, Freund G, Conic S, Sibler AP, Didier P, Stoessel A, Oulad-Abdelghani M, Vigneron M, Wagner J, Mely Y, Chatton B, Tora L, Weiss E (2016) Targeting the replisome with transduced monoclonal antibodies triggers lethal DNA replication stress in cancer cells. Exp Cell Res 342(2):145–158. Scholar
  18. 18.
    Besse S, Vigneron M, Pichard E, Puvion-Dutilleul F (1995) Synthesis and maturation of viral transcripts in herpes simplex virus type 1 infected HeLa cells: the role of interchromatin granules. Gene Expr 4:143–161PubMedGoogle Scholar
  19. 19.
    Ollion J, Cochennec J, Loll F, Escude C, Boudier T (2013) TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 29(14):1840–1841. Scholar
  20. 20.
    Bolte S, Cordelieres FP (2006) A guided tour into subcellular colocalization analysis in light microscopy. J Microsc 224. (Pt 3:213–232). Scholar
  21. 21.
    Li CH, Lee CK (1993) Minimum cross entropy thresholding. Pattern Recogn 26(4):617–625. Scholar
  22. 22.
    Weiss E, Van Regenmortel MH (1989) Use of rabbit Fab’-peroxidase conjugates prepared by the maleimide method for detecting plant viruses by ELISA. J Virol Methods 24(1–2):11–25CrossRefGoogle Scholar
  23. 23.
    Brees C, Fransen M (2014) A cost-effective approach to microporate mammalian cells with the Neon Transfection System. Anal Biochem 466:49–50. Scholar
  24. 24.
    Ball G, Demmerle J, Kaufmann R, Davis I, Dobbie IM, Schermelleh L (2015) SIMcheck: a toolbox for successful super-resolution structured illumination microscopy. Sci Rep 5:15915. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sascha Conic
    • 1
    • 2
    • 3
    • 4
    Email author
  • Dominique Desplancq
    • 4
    • 5
  • Alexia Ferrand
    • 6
  • Nacho Molina
    • 1
    • 2
    • 3
    • 4
  • Etienne Weiss
    • 4
    • 5
  • László Tora
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
  2. 2.Centre National de la Recherche Scientifique, UMR7104IllkirchFrance
  3. 3.Institut National de la Santé et de la Recherche Médicale, U1258IllkirchFrance
  4. 4.Université de StrasbourgIllkirchFrance
  5. 5.Biotechnology and Cell Signaling, UMR 7242IllkirchFrance
  6. 6.Imaging Core Facility, BiozentrumUniversity of BaselBaselSwitzerland

Personalised recommendations