Advertisement

Assessing Oligonucleotide Binding to Double-Stranded DNA

  • Negin MozafariEmail author
  • Tea UmekEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2036)

Abstract

Sequence-specific targeting of double-stranded DNA (dsDNA) using synthetic oligonucleotides (ONs) has been under investigation in different therapeutic approaches. Several methods can be used to evaluate ONs effect and binding capacity to their target sequence. Here we describe some of the methods, which have been frequently used for assessing ONs binding to dsDNA.

Key words

Antigene oligonucleotides EMSA S1 nuclease assay Restriction inhibition assay BQQ-OP cleavage CAA chemical probing 

Notes

Acknowledgments

This work was supported by the European Union’s Horizon 2020 under the Marie Skłodowska-Curie grant agreement No 721613, the Swedish Research Council, the Stockholm County Council, Hjärnfonden, and Vinnova/SweLife.

References

  1. 1.
    Smith CIE, Zain R (2019) Therapeutic oligonucleotides: state of the art. Annu Rev Pharmacol Toxicol 59:605–630.  https://doi.org/10.1146/annurev-pharmtox-010818-021050CrossRefPubMedGoogle Scholar
  2. 2.
    Lundin KE, Gissberg O, Smith CI (2015) Oligonucleotide therapies: the past and the present. Hum Gene Ther 26(8):475–485.  https://doi.org/10.1089/hum.2015.070. Epub 2015 Aug 1083CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Crooke ST (2004) Antisense strategies. Curr Mol Med 4(5):465–487CrossRefGoogle Scholar
  4. 4.
    Davidson BL, McCray PB Jr (2011) Current prospects for RNA interference-based therapies. Nat Rev Genet 12(5):329–340.  https://doi.org/10.1038/nrg2968CrossRefPubMedGoogle Scholar
  5. 5.
    Goodchild J (2011) Therapeutic oligonucleotides. Methods Mol Biol 764:1–15.  https://doi.org/10.1007/1978-1001-61779-61188-61778_61771CrossRefPubMedGoogle Scholar
  6. 6.
    Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11(2):125–140.  https://doi.org/10.1038/nrd3625CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Moser HE, Dervan PB (1987) Sequence-specific cleavage of double helical DNA by triple helix formation. Science 238(4827):645–650CrossRefGoogle Scholar
  8. 8.
    Pauling L, Corey RB (1953) A proposed structure for the nucleic acids. Proc Natl Acad Sci U S A 39(2):84–97CrossRefGoogle Scholar
  9. 9.
    Bacolla A, Wells RD (2009) Non-B DNA conformations as determinants of mutagenesis and human disease. Mol Carcinog 48(4):273–285.  https://doi.org/10.1002/mc.20507CrossRefPubMedGoogle Scholar
  10. 10.
    Bergquist H, Rocha CS, Alvarez-Asencio R, Nguyen CH, Rutland MW, Smith CI, Good L, Nielsen PE, Zain R (2016) Disruption of higher order DNA structures in Friedreich’s ataxia (GAA)n repeats by PNA or LNA targeting. PLoS One 11(11):e0165788.  https://doi.org/10.1371/journal.pone.0165788CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Loenen WA, Dryden DT, Raleigh EA, Wilson GG, Murray NE (2014) Highlights of the DNA cutters: a short history of the restriction enzymes. Nucleic Acids Res 42(1):3–19.  https://doi.org/10.1093/nar/gkt990CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Pingoud A, Jeltsch A (2001) Structure and function of type II restriction endonucleases. Nucleic Acids Res 29(18):3705–3727CrossRefGoogle Scholar
  13. 13.
    Nielsen PE, Egholm M, Berg RH, Buchardt O (1993) Sequence specific inhibition of DNA restriction enzyme cleavage by PNA. Nucleic Acids Res 21(2):197–200CrossRefGoogle Scholar
  14. 14.
    Zaghloul EM, Gissberg O, Moreno PMD, Siggens L, Hallbrink M, Jorgensen AS, Ekwall K, Zain R, Wengel J, Lundin KE, Smith CIE (2017) CTG repeat-targeting oligonucleotides for down-regulating Huntingtin expression. Nucleic Acids Res 45(9):5153–5169.  https://doi.org/10.1093/nar/gkx111CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Vogt VM (1973) Purification and further properties of single-strand-specific nuclease from Aspergillus oryzae. Eur J Biochem 33(1):192–200CrossRefGoogle Scholar
  16. 16.
    Evans T, Efstratiadis A (1986) Sequence-dependent S1 nuclease hypersensitivity of a heteronomous DNA duplex. J Biol Chem 261(31):14771–14780PubMedGoogle Scholar
  17. 17.
    Balagurumoorthy P, Adelstein SJ, Kassis AI (2008) Method to eliminate linear DNA from mixture containing nicked circular, supercoiled, and linear plasmid DNA. Anal Biochem 381(1):172–174.  https://doi.org/10.1016/j.ab.2008.06.037CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Pabon-Martinez YV, Xu Y, Villa A, Lundin KE, Geny S, Nguyen CH, Pedersen EB, Jorgensen PT, Wengel J, Nilsson L, Smith CIE, Zain R (2017) LNA effects on DNA binding and conformation: from single strand to duplex and triplex structures. Sci Rep 7(1):11043.  https://doi.org/10.1038/s41598-017-09147-8CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Hartono YD, Pabon-Martinez YV, Uyar A, Wengel J, Lundin KE, Zain R, Smith CIE, Nilsson L, Villa A (2017) Role of pseudoisocytidine tautomerization in triplex-forming oligonucleotides: in silico and in vitro studies. ACS Omega 2(5):2165–2177.  https://doi.org/10.1021/acsomega.7b00347CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Helene C (1991) The anti-gene strategy: control of gene expression by triplex-forming-oligonucleotides. Anticancer Drug Des 6(6):569–584PubMedGoogle Scholar
  21. 21.
    Knauert MP, Glazer PM (2001) Triplex forming oligonucleotides: sequence-specific tools for gene targeting. Hum Mol Genet 10(20):2243–2251CrossRefGoogle Scholar
  22. 22.
    Duca M, Vekhoff P, Oussedik K, Halby L, Arimondo PB (2008) The triple helix: 50 years later, the outcome. Nucleic Acids Res 36(16):5123–5138.  https://doi.org/10.1093/nar/gkn493CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zaid A, Sun JS, Nguyen CH, Bisagni E, Garestier T, Grierson DS, Zain R (2004) Triple-helix directed cleavage of double-stranded DNA by benzoquinoquinoxaline-1,10-phenanthroline conjugates. Chembiochem 5(11):1550–1557.  https://doi.org/10.1002/cbic.200400074CrossRefPubMedGoogle Scholar
  24. 24.
    Escude C, Nguyen CH, Kukreti S, Janin Y, Sun JS, Bisagni E, Garestier T, Helene C (1998) Rational design of a triple helix-specific intercalating ligand. Proc Natl Acad Sci U S A 95(7):3591–3596CrossRefGoogle Scholar
  25. 25.
    Zain R, Marchand C, Sun J, Nguyen CH, Bisagni E, Garestier T, Helene C (1999) Design of a triple-helix-specific cleaving reagent. Chem Biol 6(11):771–777CrossRefGoogle Scholar
  26. 26.
    Bentin T, Larsen HJ, Nielsen PE (2003) Combined triplex/duplex invasion of double-stranded DNA by “tail-clamp” peptide nucleic acid. Biochemistry 42(47):13987–13995.  https://doi.org/10.1021/bi0351918CrossRefPubMedGoogle Scholar
  27. 27.
    Moreno PM, Geny S, Pabon YV, Bergquist H, Zaghloul EM, Rocha CS, Oprea II, Bestas B, Andaloussi SE, Jorgensen PT, Pedersen EB, Lundin KE, Zain R, Wengel J, Smith CI (2013) Development of bis-locked nucleic acid (bisLNA) oligonucleotides for efficient invasion of supercoiled duplex DNA. Nucleic Acids Res 41(5):3257–3273.  https://doi.org/10.1093/nar/gkt007CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Kuśmierek JT, Singer B (1982) Chloroacetaldehyde-treated ribo- and deoxyribopolynucleotides. 1. Reaction products. Biochemistry 21(22):5717.  https://doi.org/10.1021/bi00265a050CrossRefPubMedGoogle Scholar
  29. 29.
    Zianni M, Tessanne K, Merighi M, Laguna R, Tabita FR (2006) Identification of the DNA bases of a DNase I footprint by the use of dye primer sequencing on an automated capillary DNA analysis instrument. J Biomol Tech 17(2):103PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Laboratory Medicine, Center for Advanced Therapies, Karolinska InstitutetKarolinska University Hospital HuddingeStockholmSweden

Personalised recommendations