Antisense Oligonucleotides for Splice Modulation: Assessing Splice Switching Efficacy

  • Cristina S. J. RochaEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2036)


Today, there are emerging numbers of oligonucleotide therapies being approved by the governmental authorities. These types of therapies present a different mode of action when compared to the traditional small molecules, acting at the RNA level instead of the protein level. In drug development, drug potency is defined by the drug affinity to the target biomolecule (target engagement), together with the ability to initiate a response at the molecular, cellular, tissue, or system level (efficacy). In oligonucleotide therapies, affinity and efficacy can be both easily evaluated by gene expression analysis. Although more advanced techniques can be used, this chapter presents a protocol to evaluate splice switching oligonucleotide efficacy that can be easily applied in a molecular biology laboratory without the need of advanced equipment. It describes all steps from sample preparation to data analysis.

Key words

Splice modulation efficacy Antisense oligonucleotides RT-PCR RNA isolation Agarose electrophoresis Splice switching oligonucleotides 


  1. 1.
    Sterne-Weiler T, Sanford JR (2014) Exon identity crisis: disease-causing mutations that disrupt the splicing code. Genome Biol 15(1):201–201. Scholar
  2. 2.
    Martinovich KM, Shaw NC, Kicic A, Schultz A, Fletcher S, Wilton SD, Stick SM (2018) The potential of antisense oligonucleotide therapies for inherited childhood lung diseases. Mol Cell Pediatr 5(1):3. Scholar
  3. 3.
    Havens MA, Hastings ML (2016) Splice-switching antisense oligonucleotides as therapeutic drugs. Nucleic Acids Res 44(14):6549–6563. Scholar
  4. 4.
    FDA grants accelerated approval to first drug for Duchenne muscular dystrophy. (19th September 2016)Google Scholar
  5. 5.
    FDA approves first drug for spinal muscular atrophy (23 December 2016)Google Scholar
  6. 6.
    Bestas B, Moreno PMD, Blomberg KEM, Mohammad DK, Saleh AF, Sutlu T, Nordin JZ, Guterstam P, Gustafsson MO, Kharazi S, Piątosa B, Roberts TC, Behlke MA, Wood MJA, Gait MJ, Lundin KE, El Andaloussi S, Månsson R, Berglöf A, Wengel J, Smith CIE (2014) Splice-correcting oligonucleotides restore BTK function in X-linked agammaglobulinemia model. J Clin Invest 124(9):4067–4081. Scholar
  7. 7.
    Rocha CSJ, Wiklander OPB, Larsson L, Moreno PMD, Parini P, Lundin KE, Smith CIE (2015) RNA therapeutics inactivate PCSK9 by inducing a unique intracellular retention form. J Mol Cell Cardiol 82:186–193. Scholar
  8. 8.
    van Pelt-Verkuil E, van Belkum A, Hays JP (2008) Principles and technical aspects of PCR amplification. doi: Scholar
  9. 9.
    Hayward AL, Oefner PJ, Kainer DB, Hinojos CA, Doris PA (1999) 15- kinetics of competitive reverse transcriptase-PCR. In: Innis MA, Gelfand DH, Sninsky JJ (eds) PCR applications. Academic Press, San Diego, pp 231–261. Scholar
  10. 10.
    Vandenbroucke II, Vandesompele J, Paepe AD, Messiaen L (2001) Quantification of splice variants using real-time PCR. Nucleic Acids Res 29(13):e68–e68. Scholar
  11. 11.
    Dorak MT (2006) Real-time PCR. Taylor & Francis, LondonGoogle Scholar
  12. 12.
    Dheda K, Huggett JF, Bustin SA, Johnson MA, Rook G, Zumla A (2004) Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37(1):112–114, 116, 118-119. Scholar
  13. 13.
    Forootan A, Sjoback R, Bjorkman J, Sjogreen B, Linz L, Kubista M (2017) Methods to determine limit of detection and limit of quantification in quantitative real-time PCR (qPCR). Biomol Detect Quantif 12:1–6. Scholar
  14. 14.
    Kolacsek O, Pergel E, Varga N, Apati A, Orban TI (2017) Ct shift: a novel and accurate real-time PCR quantification model for direct comparison of different nucleic acid sequences and its application for transposon quantifications. Gene 598:43–49. Scholar
  15. 15.
    Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative CT method. Nat Protoc 3(6):1101–1108. Scholar
  16. 16.
    Thornton B, Basu C (2011) Real-time PCR (qPCR) primer design using free online software. Biochem Mol Biol Educ 39(2):145–154. Scholar
  17. 17.
    Sun B, Tao L, Zheng YL (2014) Simultaneous quantification of alternatively spliced transcripts in a single droplet digital PCR reaction. BioTechniques 56(6):319–325. Scholar
  18. 18.
    Verheul RC, van Deutekom JC, Datson NA (2016) Digital droplet PCR for the absolute quantification of exon skipping induced by antisense oligonucleotides in (pre-)clinical development for Duchenne muscular dystrophy. PLoS One 11(9):e0162467. Scholar
  19. 19.
    Van Heetvelde M, Van Loocke W, Trypsteen W, Baert A, Vanderheyden K, Crombez B, Vandesompele J, De Leeneer K, Claes KBM (2017) Evaluation of relative quantification of alternatively spliced transcripts using droplet digital PCR. Biomol Detect Quantif 13:40–48. Scholar
  20. 20.
    Sun B, Zheng YL (2018) Simultaneous quantification of multiple alternatively spliced mRNA transcripts using droplet digital PCR. Methods Mol Biol 1768:387–400. Scholar
  21. 21.
    Farrell RE (2010) Chapter 2 - RNA isolation strategies. In: Farrell RE (ed) RNA methodologies, 4th edn. Academic Press, San Diego, pp 45–80. Scholar
  22. 22.
    Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3 – New capabilities and interfaces. Nucleic Acids Res 40(15):e115. Scholar
  23. 23.
    Lorenz TC (2012) Polymerase chain reaction: basic protocol plus troubleshooting and optimization strategies. J Vis Exp 63:e3998–e3998. Scholar
  24. 24.
    Chomczynski P, Sacchi N (1987) Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Anal Biochem 162(1):156–159. Scholar
  25. 25.
    Shagin DA, Lukyanov KA, Vagner LL, Matz MV (1999) Regulation of average length of complex PCR product. Nucleic Acids Res 27(18):e23CrossRefGoogle Scholar
  26. 26.
    Sang J, Wang Z, Li M, Cao J, Niu G, Xia L, Zou D, Wang F, Xu X, Han X, Fan J, Yang Y, Zuo W, Zhang Y, Zhao W, Bao Y, Xiao J, Hu S, Hao L, Zhang Z (2018) ICG: a wiki-driven knowledgebase of internal control genes for RT-qPCR normalization. Nucleic Acids Res 46(D1):D121–D126. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Clinical Pharmacology & Safety Sciences, BioPharmaceuticals R&DAstraZenecaGothenburgSweden

Personalised recommendations