Advertisement

Studying the Biotransformation of Phosphorothioate-Containing Oligonucleotide Drugs by LC-MS

  • Christophe Husser
  • Erich Koller
  • Andreas Brink
  • Simone SchadtEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2036)

Abstract

Across the pharmaceutical industry, there is increasing interest and need to investigate the biotransformation of oligonucleotide drugs. The method of choice is high-resolution mass spectrometry due to its unmet sensitivity and specificity.

Here, we describe a method developed and applied in our laboratory studying the biotransformation of phosphorothioate-containing oligonucleotide drugs. This method is based on capillary flow liquid chromatography with column switching coupled to high-resolution mass spectrometry.

Key words

Oligonucleotide biotransformation UPLC Column switching High resolution mass spectrometry All ion fragmentation 

References

  1. 1.
    Husser C, Brink A, Zell M, Muller MB, Koller E, Schadt S (2017) Identification of GalNAc-conjugated antisense oligonucleotide metabolites using an untargeted and generic approach based on high resolution mass spectrometry. Anal Chem 89(12):6821–6826.  https://doi.org/10.1021/acs.analchem.7b01244CrossRefPubMedGoogle Scholar
  2. 2.
    Shemesh CS, Yu RZ, Gaus HJ, Greenlee S, Post N, Schmidt K, Migawa MT, Seth PP, Zanardi TA, Prakash TP, Swayze EE, Henry SP, Wang Y (2016) Elucidation of the biotransformation pathways of a Galnac3-conjugated antisense oligonucleotide in rats and monkeys. Mol Ther Nucleic Acids 5:e319.  https://doi.org/10.1038/mtna.2016.31CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Crooke ST (2008) Antisense drug technology: principles, strategies, and applications, 2nd edn. CRC Press, Boca RatonGoogle Scholar
  4. 4.
    Yu RZ, Kim TW, Hong A, Watanabe TA, Gaus HJ, Geary RS (2007) Cross-species pharmacokinetic comparison from mouse to man of a second-generation antisense oligonucleotide, ISIS 301012, targeting human apolipoprotein B-100. Drug Metab Dispos 35(3):460–468.  https://doi.org/10.1124/dmd.106.012401CrossRefPubMedGoogle Scholar
  5. 5.
    Geary RS, Norris D, Yu R, Bennett CF (2015) Pharmacokinetics, biodistribution and cell uptake of antisense oligonucleotides. Adv Drug Deliv Rev 87:46–51.  https://doi.org/10.1016/j.addr.2015.01.008CrossRefPubMedGoogle Scholar
  6. 6.
    Geary RS (2009) Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol 5(4):381–391.  https://doi.org/10.1517/17425250902877680CrossRefPubMedGoogle Scholar
  7. 7.
    Yu RZ, Grundy JS, Geary RS (2013) Clinical pharmacokinetics of second generation antisense oligonucleotides. Expert Opin Drug Metab Toxicol 9(2):169–182.  https://doi.org/10.1517/17425255.2013.737320CrossRefPubMedGoogle Scholar
  8. 8.
    Juliano RL (2016) The delivery of therapeutic oligonucleotides. Nucleic Acids Res 44(14):6518–6548.  https://doi.org/10.1093/nar/gkw236CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Frieden M, Hansen HF, Koch T (2003) Nuclease stability of LNA oligonucleotides and LNA-DNA chimeras. Nucleosides Nucleotides Nucleic Acids 22(5-8):1041–1043.  https://doi.org/10.1081/NCN-120022731CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Christophe Husser
    • 1
  • Erich Koller
    • 1
  • Andreas Brink
    • 1
  • Simone Schadt
    • 1
    Email author
  1. 1.Roche Pharma Research and Early Development, Roche Innovation Center BaselF. Hoffmann-La Roche Ltd.BaselSwitzerland

Personalised recommendations