Advertisement

Evaluation of Cell-Penetrating Peptide Delivery of Antisense Oligonucleotides for Therapeutic Efficacy in Spinal Muscular Atrophy

  • Suzan M. HammondEmail author
  • Frank Abendroth
  • Michael J. Gait
  • Matthew J. A. Wood
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2036)

Abstract

Antisense oligonucleotides (ASOs) are a widely used form of gene therapy, which is translatable to multiple disorders. A major obstacle for ASO efficacy is its bioavailability for in vivo and in vitro studies. To overcome this challenge we use cell-penetrating peptides (CPPs) for systemic delivery of ASOs. One of the most advanced clinical uses of ASOs is for the treatment of spinal muscular atrophy (SMA). In this chapter, we describe the techniques used for in vitro screening and analysing in vivo biodistribution of CPP-conjugated ASOs targeting the survival motor neuron 2, SMN2, the dose-dependent modifying gene for SMA.

Key words

Cell-penetrating peptides Oligonucleotide delivery Spinal muscular atrophy Survival motor neuron Splice switching oligonucleotides 

References

  1. 1.
    Pooga M, Soomets U, Hallbrink M, Valkna A, Saar K, Rezaei K et al (1998) Cell penetrating PNA constructs regulate galanin receptor levels and modify pain transmission in vivo. Nat Biotechnol 16(9):857–861.  https://doi.org/10.1038/nbt0998-857CrossRefPubMedGoogle Scholar
  2. 2.
    Boisguerin P, Deshayes S, Gait MJ, O'Donovan L, Godfrey C, Betts CA et al (2015) Delivery of therapeutic oligonucleotides with cell penetrating peptides. Adv Drug Deliv Rev 87:52–67.  https://doi.org/10.1016/j.addr.2015.02.008CrossRefPubMedGoogle Scholar
  3. 3.
    Jirka SMG, t Hoen PAC, Diaz Parillas V, Tanganyika-de Winter CL, Verheul RC, Aguilera B et al (2018) Cyclic peptides to improve delivery and exon skipping of antisense oligonucleotides in a mouse model for Duchenne muscular dystrophy. Mol Ther 26(1):132–147.  https://doi.org/10.1016/j.ymthe.2017.10.004CrossRefPubMedGoogle Scholar
  4. 4.
    Betts C, Saleh AF, Arzumanov AA, Hammond SM, Godfrey C, Coursindel T et al (2012) Pip6-PMO, a new generation of peptide-oligonucleotide conjugates with improved cardiac exon skipping activity for DMD treatment. Mol Ther 1(8):e38Google Scholar
  5. 5.
    Betts CA, Saleh AF, Carr CA, Muses S, Wells KE, Hammond SM et al (2015) Implications for cardiac function following rescue of the dystrophic diaphragm in a mouse model of duchenne muscular dystrophy. Sci Rep 5:11632.  https://doi.org/10.1038/srep11632CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hammond SM, Hazell G, Shabanpoor F, Saleh AF, Bowerman M, Sleigh JN et al (2016) Systemic peptide-mediated oligonucleotide therapy improves long-term survival in spinal muscular atrophy. Proc Natl Acad Sci U S A 113(39):10962–10967.  https://doi.org/10.1073/pnas.1605731113CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Yin H, Saleh AF, Betts C, Camelliti P, Seow Y, Ashraf S et al (2011) Pip5 transduction peptides direct high efficiency oligonucleotide-mediated dystrophin exon skipping in heart and phenotypic correction in mdx mice. Mol Ther 19(7):1295–1303CrossRefGoogle Scholar
  8. 8.
    Jearawiriyapaisarn N, Moulton HM, Buckley B, Roberts J, Sazani P, Fucharoen S et al (2008) Sustained dystrophin expression induced by peptide-conjugated morpholino oligomers in the muscles of mdx mice. Mol Ther 16(9):1624–1629.  https://doi.org/10.1038/mt.2008.120CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Lebleu B, Moulton HM, Abes R, Ivanova GD, Abes S, Stein DA et al (2008) Cell penetrating peptide conjugates of steric block oligonucleotides. Adv Drug Deliv Rev 60(4–5):517–529.  https://doi.org/10.1016/j.addr.2007.09.002CrossRefPubMedGoogle Scholar
  10. 10.
    Lefebvre S, Burglen L, Reboullet S, Clermont O, Burlet P, Viollet L et al (1995) Identification and characterization of a spinal muscular atrophy-determining gene. Cell 80(1):155–165CrossRefGoogle Scholar
  11. 11.
    Wirth B (2000) An update of the mutation spectrum of the survival motor neuron gene (SMN1) in autosomal recessive spinal muscular atrophy (SMA). Hum Mutat 15(3):228–237CrossRefGoogle Scholar
  12. 12.
    Cartegni L, Krainer AR (2002) Disruption of an SF2/ASF-dependent exonic splicing enhancer in SMN2 causes spinal muscular atrophy in the absence of SMN1. Nat Genet 30(4):377–384.  https://doi.org/10.1038/ng854CrossRefPubMedGoogle Scholar
  13. 13.
    Kashima T, Manley JL (2003) A negative element in SMN2 exon 7 inhibits splicing in spinal muscular atrophy. Nat Genet 34(4):460–463.  https://doi.org/10.1038/ng1207CrossRefPubMedGoogle Scholar
  14. 14.
    Lorson CL, Hahnen E, Androphy EJ, Wirth B (1999) A single nucleotide in the SMN gene regulates splicing and is responsible for spinal muscular atrophy. Proc Natl Acad Sci U S A 96(11):6307–6311CrossRefGoogle Scholar
  15. 15.
    Monani UR, Lorson CL, Parsons DW, Prior TW, Androphy EJ, Burghes AH et al (1999) A single nucleotide difference that alters splicing patterns distinguishes the SMA gene SMN1 from the copy gene SMN2. Hum Mol Genet 8(7):1177–1183CrossRefGoogle Scholar
  16. 16.
    Le TT, Pham LT, Butchbach ME, Zhang HL, Monani UR, Coovert DD et al (2005) SMNDelta7, the major product of the centromeric survival motor neuron (SMN2) gene, extends survival in mice with spinal muscular atrophy and associates with full-length SMN. Hum Mol Genet 14(6):845–857.  https://doi.org/10.1093/hmg/ddi078CrossRefPubMedGoogle Scholar
  17. 17.
    Groen EJN, Perenthaler E, Courtney NL, Jordan CY, Shorrock HK, van der Hoorn D et al (2018) Temporal and tissue-specific variability of SMN protein levels in mouse models of spinal muscular atrophy. Hum Mol Genet 27(16):2851–2862.  https://doi.org/10.1093/hmg/ddy195CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Hammond SM, Wood MJ (2011) Genetic therapies for RNA mis-splicing diseases. Trends Genet 27(5):196–205.  https://doi.org/10.1016/j.tig.2011.02.004CrossRefPubMedGoogle Scholar
  19. 19.
    Hua Y, Vickers TA, Baker BF, Bennett CF, Krainer AR (2007) Enhancement of SMN2 exon 7 inclusion by antisense oligonucleotides targeting the exon. PLoS Biol 5(4):e73.  https://doi.org/10.1371/journal.pbio.0050073CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Singh NK, Singh NN, Androphy EJ, Singh RN (2006) Splicing of a critical exon of human survival motor neuron is regulated by a unique silencer element located in the last intron. Mol Cell Biol 26(4):1333–1346CrossRefGoogle Scholar
  21. 21.
    Walke DW, Blackley A (2014) Isis pharmaceuticals reports data from ISIS-SMN Rx phase 2 studies in infants and children with spinal muscular atrophy. Ionis pharmaceuticals webpageGoogle Scholar
  22. 22.
    Araujo A, Araujo M, Swoboda KJ (2009) Vascular perfusion abnormalities in infants with spinal muscular atrophy. J Pediatr 155(2):292–294CrossRefGoogle Scholar
  23. 23.
    Bowerman M, Swoboda KJ, Michalski JP, Wang GS, Reeks C, Beauvais A et al (2012) Glucose metabolism and pancreatic defects in spinal muscular atrophy. Ann Neurol 72(2):256–268.  https://doi.org/10.1002/ana.23582CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Braun S, Croizat B, Lagrange MC, Warter JM, Poindron P (1995) Constitutive muscular abnormalities in culture in spinal muscular atrophy. Lancet 345(8951):694–695CrossRefGoogle Scholar
  25. 25.
    Davis RH, Miller EA, Zhang RZ, Swoboda KJ (2015) Responses to fasting and glucose loading in a cohort of well children with spinal muscular atrophy Type II. J Pediatr 167(6):1362–1368 e1361.  https://doi.org/10.1016/j.jpeds.2015.09.023CrossRefPubMedGoogle Scholar
  26. 26.
    Fischer U, Liu Q, Dreyfuss G (1997) The SMN-SIP1 complex has an essential role in spliceosomal snRNP biogenesis. Cell 90(6):1023–1029CrossRefGoogle Scholar
  27. 27.
    Hayhurst M, Wagner AK, Cerletti M, Wagers AJ, Rubin LL (2012) A cell-autonomous defect in skeletal muscle satellite cells expressing low levels of survival of motor neuron protein. Dev Biol 368(2):323–334.  https://doi.org/10.1016/j.ydbio.2012.05.037CrossRefPubMedGoogle Scholar
  28. 28.
    Liu Q, Fischer U, Wang F, Dreyfuss G (1997) The spinal muscular atrophy disease gene product, SMN, and its associated protein SIP1 are in a complex with spliceosomal snRNP proteins. Cell 90(6):1013–1021CrossRefGoogle Scholar
  29. 29.
    Pellizzoni L, Yong J, Dreyfuss G (2002) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298(5599):1775–1779.  https://doi.org/10.1126/science.1074962CrossRefPubMedGoogle Scholar
  30. 30.
    Rajendra TK, Gonsalvez GB, Walker MP, Shpargel KB, Salz HK, Matera AG (2007) A Drosophila melanogaster model of spinal muscular atrophy reveals a function for SMN in striated muscle. J Cell Biol 176(6):831–841.  https://doi.org/10.1083/jcb.200610053CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Rudnik-Schoneborn S, Vogelgesang S, Armbrust S, Graul-Neumann L, Fusch C, Zerres K (2010) Digital necroses and vascular thrombosis in severe spinal muscular atrophy. Muscle Nerve 42(1):144–147CrossRefGoogle Scholar
  32. 32.
    Zhou H, Janghra N, Mitrpant C, Dickinson RL, Anthony K, Price L et al (2013) A novel morpholino oligomer targeting ISS-N1 improves rescue of severe spinal muscular atrophy transgenic mice. Hum Gene Ther 24(3):331–342.  https://doi.org/10.1089/hum.2012.211CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Naryshkin NA, Weetall M, Dakka A, Narasimhan J, Zhao X, Feng Z et al (2014) Motor neuron disease. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345(6197):688–693.  https://doi.org/10.1126/science.1250127CrossRefPubMedGoogle Scholar
  34. 34.
    d'Ydewalle C, Ramos DM, Pyles NJ, Ng SY, Gorz M, Pilato CM et al (2017) The antisense transcript SMN-AS1 regulates SMN expression and is a novel therapeutic target for spinal muscular atrophy. Neuron 93(1):66–79.  https://doi.org/10.1016/j.neuron.2016.11.033CrossRefPubMedGoogle Scholar
  35. 35.
    Godfrey C, Muses S, McClorey G, Wells KE, Coursindel T, Terry RL et al (2015) How much dystrophin is enough: the physiological consequences of different levels of dystrophin in the mdx mouse. Hum Mol Genet 24(15):4225–4237.  https://doi.org/10.1093/hmg/ddv155CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Harrison M, O'Brien A, Adams L, Cowin G, Ruitenberg MJ, Sengul G et al (2013) Vertebral landmarks for the identification of spinal cord segments in the mouse. NeuroImage 68:22–29.  https://doi.org/10.1016/j.neuroimage.2012.11.048CrossRefPubMedGoogle Scholar
  37. 37.
    Li KW (2011) Neuroproteomics: deciphering brain function and disorders. NeuroMethods 57:3–9.  https://doi.org/10.1007/978-1-61779-111-6_1CrossRefGoogle Scholar
  38. 38.
    Lovell DP (1986) Variation in pentobarbitone sleeping time in mice. 1. Strain and sex differences. Lab Anim 20(2):85–90.  https://doi.org/10.1258/002367786780865142CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Suzan M. Hammond
    • 1
    Email author
  • Frank Abendroth
    • 2
    • 3
  • Michael J. Gait
    • 2
  • Matthew J. A. Wood
    • 1
  1. 1.Department of PaediatricsUniversity of OxfordOxfordUK
  2. 2.Laboratory of Molecular BiologyMedical Research CouncilCambridgeUK
  3. 3.Institute of Pharmacy and BiochemistryJohannes Gutenberg-University of MainzMainzGermany

Personalised recommendations