Advertisement

Quantification of Isotopologues of Amino Acids by Multiplexed Stable Isotope-Resolved Metabolomics Using Ultrahigh-Resolution Mass Spectrometry Coupled with Direct Infusion

  • Ye Yang
  • Teresa W.-M. FanEmail author
  • Andrew N. Lane
  • Richard M. Higashi
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2030)

Abstract

Stable isotope-resolved metabolomics (SIRM) is increasingly used among researchers for metabolic studies including amino acid metabolism. However, the classical GC- or HPLC-based methods for amino acid quantification do not meet the needs for multiplexed stable isotope-enriched analysis by ultrahigh-resolution Fourier transform mass spectrometry (UHR-FTMS). This is due to insufficient acquisition time during chromatographic separations and large dynamic range in concentrations of analytes, which compromises detection and quantification of the numerous metabolite isotopologues present in crude extracts. This chapter discusses a modified ethyl chloroformate derivatization method to enable rapid quantitative analysis of stable isotope-enriched amino acids using direct infusion ion introduction coupled with UHR-FTMS.

Key words

Ultrahigh-resolution Fourier transform mass spectrometry Amino acids Stable isotope-resolved metabolomics Direct infusion nano-electrospray Chloroformate derivatization 

Notes

Acknowledgments

This work was supported in part by the National Institutes of Health grants [5R01ES22191-04, 3R01ES022191-04S1, 1U24DK097215-01A1, and P01 CA163223-01A1].

References

  1. 1.
    Rodwell VW, Bender DA, Kennelly PJ, Botham KM, Weil PA (2015) Harper’s illustrated biochemistry, 30th edn. Lange Medical Books/McGraw-Hill, New York. Chapters 29, 30Google Scholar
  2. 2.
    Yang Y, Fan TW-M, Lane AN, Higashi RM (2017) Chloroformate derivatization for tracing the fate of amino acids in cells and tissues by multiple stable isotope resolved metabolomics (mSIRM). Anal Chim Acta 976:63–73.  https://doi.org/10.1016/j.aca.2017.04.014CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lane AN, Fan TW-M (2015) Regulation of mammalian nucleotide metabolism and biosynthesis. Nucleic Acids Res 43(4):2466–2485.  https://doi.org/10.1093/nar/gkv047CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Balendiran GK, Dabur R, Fraser D (2004) The role of glutathione in cancer. Cell Biochem Funct 22(6):343–352.  https://doi.org/10.1002/cbf.1149CrossRefPubMedGoogle Scholar
  5. 5.
    Chatterjee A, Gupta S (2018) The multifaceted role of glutathione S-transferases in cancer. Cancer Lett 433:33–42.  https://doi.org/10.1016/j.canlet.2018.06.028CrossRefPubMedGoogle Scholar
  6. 6.
    Traverso N, Ricciarelli R, Nitti M, Marengo B, Furfaro AL, Pronzato MA, Marinari UM, Domenicotti C (2013) Role of glutathione in cancer progression and chemoresistance. Oxidative Med Cell Longev 2013:972913.  https://doi.org/10.1155/2013/972913CrossRefGoogle Scholar
  7. 7.
    Robaczewska J, Kedziora-Kornatowska K, Kozakiewicz M, Zary-Sikorska E, Pawluk H, Pawliszak W, Kedziora J (2016) Role of glutathione metabolism and glutathione-related antioxidant defense systems in hypertension. J Physiol Pharmacol 67(3):331–337PubMedGoogle Scholar
  8. 8.
    Sharma R, Yang Y, Sharma A, Awasthi S, Awasthi YC (2004) Antioxidant role of glutathione S-transferases: protection against oxidant toxicity and regulation of stress-mediated apoptosis. Antioxid Redox Signal 6(2):289–300.  https://doi.org/10.1089/152308604322899350CrossRefPubMedGoogle Scholar
  9. 9.
    Ha HC, Sirisoma NS, Kuppusamy P, Zweier JL, Woster PM, Casero RA Jr (1998) The natural polyamine spermine functions directly as a free radical scavenger. Proc Natl Acad Sci U S A 95(19):11140–11145CrossRefGoogle Scholar
  10. 10.
    Sagor GH, Berberich T, Takahashi Y, Niitsu M, Kusano T (2013) The polyamine spermine protects Arabidopsis from heat stress-induced damage by increasing expression of heat shock-related genes. Transgenic Res 22(3):595–605.  https://doi.org/10.1007/s11248-012-9666-3CrossRefPubMedGoogle Scholar
  11. 11.
    Ng J, Papandreou A, Heales SJ, Kurian MA (2015) Monoamine neurotransmitter disorders-clinical advances and future perspectives. Nat Rev Neurol 11(10):567–584.  https://doi.org/10.1038/nrneurol.2015.172CrossRefPubMedGoogle Scholar
  12. 12.
    Badawy AB-B (2017) Kynurenine pathway of tryptophan metabolism: regulatory and functional aspects. Int J Tryptophan Res 10:1–20CrossRefGoogle Scholar
  13. 13.
    Frumento G, Rotondo R, Tonetti M, Damonte G, Benatti U, Ferrara GB (2002) Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J Exp Med 196(4):459–468CrossRefGoogle Scholar
  14. 14.
    Fan TW-M, Lorkiewicz PK, Sellers K, Moseley HN, Higashi RM, Lane AN (2012) Stable isotope-resolved metabolomics and applications for drug development. Pharmacol Ther 133(3):366–391.  https://doi.org/10.1016/j.pharmthera.2011.12.007CrossRefPubMedGoogle Scholar
  15. 15.
    Fan TW-M, Lane AN, Higashi RM, Yan J (2011) Stable isotope resolved metabolomics of lung cancer in a SCID mouse model. Metabolomics 7(2):257–269.  https://doi.org/10.1007/s11306-010-0249-0CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Fan TW-M, Lane AN, Higashi RM, Farag MA, Gao H, Bousamra M, Miller DM (2009) Altered regulation of metabolic pathways in human lung cancer discerned by (13)C stable isotope-resolved metabolomics (SIRM). Mol Cancer 8:41.  https://doi.org/10.1186/1476-4598-8-41CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lane AN, Fan TW-M, Bousamra M 2nd, Higashi RM, Yan J, Miller DM (2011) Stable isotope-resolved metabolomics (SIRM) in cancer research with clinical application to nonsmall cell lung cancer. OMICS 15(3):173–182.  https://doi.org/10.1089/omi.2010.0088CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Fan TW-M, Lane AN, Higashi RM (2016) Stable isotope resolved metabolomics studies in ex vivo tissue slices. Bio Protoc 6(3):e1730CrossRefGoogle Scholar
  19. 19.
    Bruntz RC, Lane AN, Higashi RM, Fan TW-M (2017) Exploring cancer metabolism using stable isotope-resolved metabolomics (SIRM). J Biol Chem 292(28):11601–11609.  https://doi.org/10.1074/jbc.R117.776054CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Crooks DR, Maio N, Lane AN, Jarnik M, Higashi RM, Haller RG, Yang Y, Fan TW-M, Linehan WM, Rouault TA (2018) Acute loss of iron-sulfur clusters results in metabolic reprogramming and generation of lipid droplets in mammalian cells. J Biol Chem 293(21):8297–8311.  https://doi.org/10.1074/jbc.RA118.001885CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Maroli A, Nandula V, Duke S, Tharayil N (2016) Stable isotope resolved metabolomics reveals the role of anabolic and catabolic processes in glyphosate-induced amino acid accumulation in Amaranthus palmeri biotypes. J Agric Food Chem 64(37):7040–7048.  https://doi.org/10.1021/acs.jafc.6b02196CrossRefPubMedGoogle Scholar
  22. 22.
    Metallo CM, Gameiro PA, Bell EL, Mattaini KR, Yang J, Hiller K, Jewell CM, Johnson ZR, Irvine DJ, Guarente L, Kelleher JK, Vander Heiden MG, Iliopoulos O, Stephanopoulos G (2012) Reductive glutamine metabolism by IDH1 mediates lipogenesis under hypoxia. Nature 481(7381):380–384.  https://doi.org/10.1038/nature10602CrossRefGoogle Scholar
  23. 23.
    Greene GL, Kessler EG Jr, Deslattes RD, Borner H (1986) New determination of the deuteron binding energy and the neutron mass. Phys Rev Lett 56(8):819–822.  https://doi.org/10.1103/PhysRevLett.56.819CrossRefPubMedGoogle Scholar
  24. 24.
    Moore S, Stein WH (1951) Chromatography of amino acids on sulfonated polystyrene resins. J Biol Chem 192(2):663–681PubMedGoogle Scholar
  25. 25.
    Jia M, Keutgen N, Matsuhashi S, Mitzuniwa C, Ito T, Fujimura T, Hashimoto S (2001) Ion chromatographic analysis of selected free amino acids and cations to investigate the change of nitrogen metabolism by herbicide stress in soybean (glycine max). J Agric Food Chem 49(1):276–280CrossRefGoogle Scholar
  26. 26.
    Schummer C, Delhomme O, Appenzeller BM, Wennig R, Millet M (2009) Comparison of MTBSTFA and BSTFA in derivatization reactions of polar compounds prior to GC/MS analysis. Talanta 77(4):1473–1482.  https://doi.org/10.1016/j.talanta.2008.09.043CrossRefPubMedGoogle Scholar
  27. 27.
    MacKenzie SL, Tenaschuk D, Fortier G (1987) Analysis of amino acids by gas-liquid chromatography as tert.-butyldimethylsilyl derivatives. Preparation of derivatives in a single reaction. J Chromatogr 387:241–253CrossRefGoogle Scholar
  28. 28.
    Goh CJ, Craven KG, Lepock JR, Dumbroff EB (1987) Analysis of all protein amino acids as their tert.-butyldimethylsilyl derivatives by gas-liquid chromatography. Anal Biochem 163(1):175–181CrossRefGoogle Scholar
  29. 29.
    Husek P (1991) Amino acid derivatization and analysis in five minutes. FEBS Lett 280(2):354–356CrossRefGoogle Scholar
  30. 30.
    Inagaki S, Toyo’oka T (2012) Amino acid analysis via LC-MS method after derivatization with quaternary phosphonium. Methods Mol Biol 828:47–54.  https://doi.org/10.1007/978-1-61779-445-2_5CrossRefPubMedGoogle Scholar
  31. 31.
    Rebane R, Oldekop ML, Herodes K (2012) Comparison of amino acid derivatization reagents for LC-ESI-MS analysis. Introducing a novel phosphazene-based derivatization reagent. J Chromatogr B Analyt Technol Biomed Life Sci 904:99–106.  https://doi.org/10.1016/j.jchromb.2012.07.029CrossRefPubMedGoogle Scholar
  32. 32.
    Sakaguchi Y, Kinumi T, Yamazaki T, Takatsu A (2015) A novel amino acid analysis method using derivatization of multiple functional groups followed by liquid chromatography/tandem mass spectrometry. Analyst 140(6):1965–1973.  https://doi.org/10.1039/c4an01672fCrossRefPubMedGoogle Scholar
  33. 33.
    Rebane R, Rodima T, Kutt A, Herodes K (2015) Development of amino acid derivatization reagents for liquid chromatography electrospray ionization mass spectrometric analysis and ionization efficiency measurements. J Chromatogr A 1390:62–70.  https://doi.org/10.1016/j.chroma.2015.02.050CrossRefPubMedGoogle Scholar
  34. 34.
    Jambor A, Molnar-Perl I (2009) Amino acid analysis by high-performance liquid chromatography after derivatization with 9-fluorenylmethyloxycarbonyl chloride. Literature overview and further study. J Chromatogr A 1216(15):3064–3077.  https://doi.org/10.1016/j.chroma.2009.01.068CrossRefPubMedGoogle Scholar
  35. 35.
    Mudiam MK, Ratnasekhar C, Jain R, Saxena PN, Chauhan A, Murthy RC (2012) Rapid and simultaneous determination of twenty amino acids in complex biological and food samples by solid-phase microextraction and gas chromatography-mass spectrometry with the aid of experimental design after ethyl chloroformate derivatization. J Chromatogr B Analyt Technol Biomed Life Sci 907:56–64.  https://doi.org/10.1016/j.jchromb.2012.08.035CrossRefPubMedGoogle Scholar
  36. 36.
    Qiu Y, Su M, Liu Y, Chen M, Gu J, Zhang J, Jia W (2007) Application of ethyl chloroformate derivatization for gas chromatography-mass spectrometry based metabonomic profiling. Anal Chim Acta 583(2):277–283.  https://doi.org/10.1016/j.aca.2006.10.025CrossRefPubMedGoogle Scholar
  37. 37.
    Fabiani A, Versari A, Parpinello GP, Castellari M, Galassi S (2002) High-performance liquid chromatographic analysis of free amino acids in fruit juices using derivatization with 9-fluorenylmethyl-chloroformate. J Chromatogr Sci 40(1):14–18CrossRefGoogle Scholar
  38. 38.
    Vancompernolle B, Croes K, Angenon G (2016) Optimization of a gas chromatography-mass spectrometry method with methyl chloroformate derivatization for quantification of amino acids in plant tissue. J Chromatogr B Analyt Technol Biomed Life Sci 1017–1018:241–249.  https://doi.org/10.1016/j.jchromb.2016.02.020CrossRefPubMedGoogle Scholar
  39. 39.
    Kvitvang HF, Kristiansen KA, Lien SK, Bruheim P (2014) Quantitative analysis of amino and organic acids by methyl chloroformate derivatization and GC-MS/MS analysis. Methods Mol Biol 1198:137–145.  https://doi.org/10.1007/978-1-4939-1258-2_10CrossRefPubMedGoogle Scholar
  40. 40.
    Fan TW-M, Lane AN, Higashi RM (2012) Chapter 2: considerations of sample preparation for metabolomics investigation. In: The handbook of metabolomimcs. Springer Protocols, New YorkCrossRefGoogle Scholar
  41. 41.
    Lane AN, Fan TW-M, Xie Z, Moseley HN, Higashi RM (2009) Isotopomer analysis of lipid biosynthesis by high resolution mass spectrometry and NMR. Anal Chim Acta 651(2):201–208.  https://doi.org/10.1016/j.aca.2009.08.032CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Moseley HN (2010) Correcting for the effects of natural abundance in stable isotope resolved metabolomics experiments involving ultra-high resolution mass spectrometry. BMC Bioinformatics 11:139.  https://doi.org/10.1186/1471-2105-11-139CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Carreer WJ, Flight RM, Moseley HN (2013) A computational framework for high-throughput isotopic natural abundance correction of Omics-level ultra-high resolution FT-MS datasets. Meta 3(4):853–866.  https://doi.org/10.3390/metabo3040853CrossRefGoogle Scholar
  44. 44.
    Fernandez CA, Des Rosiers C, Previs SF, David F, Brunengraber H (1996) Correction of 13C mass isotopomer distributions for natural stable isotope abundance. J Mass Spectrom 31(3):255–262.  https://doi.org/10.1002/(SICI)1096-9888(199603)31:3<255::AID-JMS290>3.0.CO;2-3CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ye Yang
    • 1
  • Teresa W.-M. Fan
    • 2
    • 3
    Email author
  • Andrew N. Lane
    • 2
    • 3
  • Richard M. Higashi
    • 2
    • 3
  1. 1.Urologic Oncology BranchNational Cancer Institute, National Institutes of HealthBethesdaUSA
  2. 2.Department of Toxicology and Cancer Biology, Markey Cancer CenterUniversity of KentuckyLexingtonUSA
  3. 3.Center for Environmental and Systems BiochemistryUniversity of KentuckyLexingtonUSA

Personalised recommendations