Advertisement

Embryoid Body Differentiation of Mouse Embryonic Stem Cells into Neurectoderm and Neural Progenitors

  • Rachel A. Shparberg
  • Hannah J. Glover
  • Michael B. MorrisEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2029)

Abstract

Mouse embryonic stem cells (mESCs) are pluripotent cells capable of differentiating in vitro to form the ~200 types of cells of the developing embryo and adult, including cells of the nervous system. This makes mESCs a useful tool for studying the molecular mechanisms of mammalian embryonic development. Many protocols involving the use of growth factors and small molecules to differentiate mESCs into neural progenitors and neurons currently exist. However, there is a paucity of protocols available that recapitulate the developmental process. Our laboratory has developed a protocol to recapitulate mammalian neural lineage development by differentiating mESCs to mature neurons via intermediate cell populations observed during in vivo embryo development. This protocol uses the amino acid l-proline to direct the differentiation of mESCs, grown as embryoid bodies, into Sox1+ neurectoderm, followed by differentiation to form Nestin+, BLBP+, and NeuN+ neural cell types.

Key words

Definitive ectoderm Directed differentiation Early primitive ectoderm-like cells l-Proline Mouse embryonic stem cells Neurectoderm Neural progenitor Neuron 

References

  1. 1.
    Nagy A, Gertsenstein M, Vintersten K, Behringer R (2003) In: Nagy A (ed) Manipulating the mouse embryo: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York, 764 pGoogle Scholar
  2. 2.
    Rivera-Pérez JA, Magnuson T (2005) Primitive streak formation in mice is preceded by localized activation of Brachyury and Wnt3. Dev Biol 288(2):363–371CrossRefGoogle Scholar
  3. 3.
    Williams M, Burdsal C, Periasamy A, Lewandoski M, Sutherland A (2012) Mouse primitive streak forms in situ by initiation of epithelial to mesenchymal transition without migration of a cell population. Dev Dyn 241(2):270–283CrossRefGoogle Scholar
  4. 4.
    Aubert J, Stavridis MP, Tweedie S, O’Reilly M, Vierlinger K, Li M et al (2003) Screening for mammalian neural genes via fluorescence-activated cell sorter purification of neural precursors from Sox1-gfp knock-in mice. Proc Natl Acad Sci 100. Suppl:11836–11841CrossRefGoogle Scholar
  5. 5.
    Anthony TE, Klein C, Fishell G, Heintz N (2004) Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41(6):881–890CrossRefGoogle Scholar
  6. 6.
    Kriegstein AR, Gotz M (2003) Radial glia diversity: a matter of cell fate. Glia 43(1):37–43CrossRefGoogle Scholar
  7. 7.
    Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115(3):281–292CrossRefGoogle Scholar
  8. 8.
    Hirai H, Karian P, Kikyo N (2011) Regulation of embryonic stem cell self-renewal and pluripotency by leukaemia inhibitory factor. Biochem J 438(1):11–23CrossRefGoogle Scholar
  9. 9.
    Coucouvanis E, Martin GR (1995) Signals for death and survival: a two-step mechanism for cavitation in the vertebrate embryo. Cell 83(2):279–287CrossRefGoogle Scholar
  10. 10.
    Coucouvanis E, Martin GR (1999) BMP signaling plays a role in visceral endoderm differentiation and cavitation in the early mouse embryo. Development 126(3):535–546PubMedGoogle Scholar
  11. 11.
    Murray P, Edgar D (2000) Regulation of programmed cell death by basement membranes in embryonic development. J Cell Biol 150(5):1215–1221CrossRefGoogle Scholar
  12. 12.
    Washington JM, Rathjen J, Felquer F, Lonic A, Bettess MD, Hamra N et al (2010) L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. Am J Physiol Cell Physiol 298(5):982–992CrossRefGoogle Scholar
  13. 13.
    Tan BSN, Kwek J, Wong CKE, Saner NJ, Yap C, Felquer F et al (2016) Src family kinases and p38 mitogen-activated protein kinases regulate pluripotent cell differentiation in culture. Public Libr Sci One 11(10):e0163244Google Scholar
  14. 14.
    Rathjen J, Washington JM, Bettess MD, Rathjen PD (2003) Identification of a biological activity that supports maintenance and proliferation of pluripotent cells from the primitive ectoderm of the mouse. Biol Reprod 69(6):1863–1871CrossRefGoogle Scholar
  15. 15.
    Lane M, Gardner DK (1993) Nonessential amino acids and glutamine decrease the time of the first three cleavage divisions and increase compaction of mouse zygotes in vitro. J Assist Reprod Genet 14(7):398–403 CrossRefGoogle Scholar
  16. 16.
    Gardner DK, Lane M (1993) Amino acids and ammonium regulate mouse embryo development in culture. Biol Reprod 48(2):377–385CrossRefGoogle Scholar
  17. 17.
    Gardner DK (1998) Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture. Theriogenology 49(1):83–102CrossRefGoogle Scholar
  18. 18.
    Lane M, Gardner DK (1997) Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil 109(1):153–164CrossRefGoogle Scholar
  19. 19.
    Gardner DK, Lane M (1996) Alleviation of the “2-cell block” and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum Reprod 11(12):2703–2712CrossRefGoogle Scholar
  20. 20.
    Chen G, Wang J (2014) Threonine metabolism and embryonic stem cell self-renewal. Curr Opin Clin Nutr Metab Care 17(1):80–85PubMedGoogle Scholar
  21. 21.
    Ryu JM, Han HJ (2011) L-threonine regulates G1/S phase transition of mouse embryonic stem cells via PI3K/Akt, MAPKs, and mTORC pathways. J Biol Chem 286(27):23667–23678CrossRefGoogle Scholar
  22. 22.
    Carey BW, Finley LWS, Cross JR, Allis CD, Thompson CB (2014) Intracellular α-ketoglutarate maintains the pluripotency of embryonic stem cells. Nature 518(7539):413–416CrossRefGoogle Scholar
  23. 23.
    Rezk Y, Huff C, Rizk B (2004) Effect of glutamine on preimplantation mouse embryo development in vitro. Am J Obstet Gynecol 190(5):1450–1454CrossRefGoogle Scholar
  24. 24.
    Ryu JM, Lee SH, Seong JK, Han HJ (2015) Glutamine contributes to maintenance of mouse embryonic stem cell self-renewal through PKC-dependent downregulation of HDAC1 and DNMT1/3a. Cell Cycle 14(20):3292–3305CrossRefGoogle Scholar
  25. 25.
    Comes S, Gagliardi M, Laprano N, Fico A, Cimmino A, Palamidessi A et al (2013) L-Proline induces a mesenchymal-like invasive program in embryonic stem cells by remodeling H3K9 and H3K36 methylation. Stem Cell Reports 1(4):307–321CrossRefGoogle Scholar
  26. 26.
    D’Aniello C, Fico A, Casalino L, Guardiola O, Di Napoli G, Cermola F et al (2015) A novel autoregulatory loop between the Gcn2-Atf4 pathway and L-Proline metabolism controls stem cell identity. Cell Death Differ 22(7):1094–1105CrossRefGoogle Scholar
  27. 27.
    Casalino L, Comes S, Lambazzi G, De Stefano B, Filosa S, De Falco S et al (2011) Control of embryonic stem cell metastability by L-proline catabolism. J Mol Cell Biol 3(2):108–122CrossRefGoogle Scholar
  28. 28.
    Rathjen J, Lake JA, Bettess MD, Washington JM, Chapman G, Rathjen PD (1999) Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J Cell Sci 112(5):601–612PubMedGoogle Scholar
  29. 29.
    Rathjen J, Haines BP, Hudson KM, Nesci A, Dunn S, Rathjen PD (2002) Directed differentiation of pluripotent cells to neural lineages: homogeneous formation and differentiation of a neurectoderm population. Development 129(11):2649–2661PubMedGoogle Scholar
  30. 30.
    Doetschman TC, Eistetter H, Katz M, Schmidt W, Kemler R (1985) The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J Embryol Exp Morphol 87(1):27–45PubMedGoogle Scholar
  31. 31.
    Ying QL, Stavridis M, Griffiths D, Li M, Smith A (2003) Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 21(2):183–186CrossRefGoogle Scholar
  32. 32.
    Harvey NT, Hughes JN, Lonic A, Yap C, Long C, Rathjen PD, Rathjen J (2010) Response to BMP4 signalling during ES cell differentiation defines intermediates of the ectoderm lineage. J Cell Sci 123(10):1796–1804CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Rachel A. Shparberg
    • 1
  • Hannah J. Glover
    • 1
  • Michael B. Morris
    • 1
    Email author
  1. 1.Embryonic Stem Cell Lab, Bosch Institute and Discipline of Physiology, School of Medical SciencesUniversity of SydneySydneyAustralia

Personalised recommendations