High-Efficiency Lentiviral Gene Modification of Primary Murine Bone-Marrow Mesenchymal Stem Cells

  • Dario Gerace
  • Binhai Ren
  • Rosetta Martiniello-Wilks
  • Ann M. SimpsonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2029)


Lentiviral vectors are the method of choice for stable gene modification of a variety of cell types. However, the efficiency with which they transduce target cells varies significantly, in particular their typically poor capacity to transduce primary stem cells. Here we describe the isolation and enrichment of murine bone-marrow mesenchymal stem cells (MSCs) via fluorescence-activated cell sorting (FACS); the cloning, production, and concentration of high-titer second generation lentiviral vectors via combined tangential flow filtration (TFF) and ultracentrifugation; and the subsequent high-efficiency gene modification of MSCs into insulin-producing cells via overexpression of the furin-cleavable human insulin (INS-FUR) gene.

Key words

Lentivirus Tangential flow filtration Mesenchymal progenitor cells Protein tyrosine phosphatase receptor type C Stem cell antigen 1 Fluorescence-activated cell sorting Gene modification 


  1. 1.
    In’t Anker PS, Scherjon SA, Kleijburg-Van Der Keur C, De Groot-Swings GMJS, Claas FHJ, Fibbe WE et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22(7):1338–1345CrossRefGoogle Scholar
  2. 2.
    Noort WA, Kruisselbrink AB, In’t Anker PS, Kruger M, Van Bezooijen RL, De Paus RA et al (2002) Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34+ cells in NOD/SCID mice. Exp Hematol 30(8):870–878CrossRefGoogle Scholar
  3. 3.
    Wang HS, Hung SC, Peng ST, Huang CC, Wei HM, Guo YJ et al (2004) Mesenchymal stem cells in the Wharton’s jelly of the human umbilical cord. Stem Cells 22(7):1330–1337CrossRefGoogle Scholar
  4. 4.
    Fan CG, Tang FW, Zhang QJ, Lu SH, Liu HY, Zhao ZM et al (2005) Characterization and neural differentiation of fetal lung mesenchymal stem cells. Cell Transplant 14(5):311–321CrossRefGoogle Scholar
  5. 5.
    De Ugarte DA, Morizono K, Elbarbary A, Alfonso Z, Zuk PA, Zhu M et al (2003) Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174(3):101–109CrossRefGoogle Scholar
  6. 6.
    Campagnoli C, Roberts IAG, Kumar S, Bennett PR, Bellantuono I, Fisk NM (2001) Identification of mesenchymal stem/progenitor cells in human first-trimester fetal blood, liver, and bone marrow. Blood 98(8):2396–2402CrossRefGoogle Scholar
  7. 7.
    Van Vlasselaer P, Falla N, Snoeck H, Mathieu E (1994) Characterization and purification of osteogenic cells from murine bone marrow by two-color cell sorting using anti-Sca-1 monoclonal antibody and wheat germ agglutinin. Blood 84(3):753–763PubMedGoogle Scholar
  8. 8.
    Eslaminejad MB, Nadri S (2009) Murine mesenchymal stem cell isolated and expanded in low and high density culture system: surface antigen expression and osteogenic culture mineralization. In Vitro Cell Dev Biol Anim 45(8):451–459CrossRefGoogle Scholar
  9. 9.
    Baddoo M, Hill K, Wilkinson R, Gaupp D, Hughes C, Kopen GC et al (2003) Characterization of mesenchymal stem cells isolated from murine bone marrow by negative selection. J Cell Biochem 89(6):1235–1249CrossRefGoogle Scholar
  10. 10.
    Soleimani M, Nadri S (2009) A protocol for isolation and culture of mesenchymal stem cells from mouse bone marrow. Nat Protoc 4(1):102–106CrossRefGoogle Scholar
  11. 11.
    Siclari VA, Zhu J, Akiyama K, Liu F, Zhang X, Chandra A et al (2013) Mesenchymal progenitors residing close to the bone surface are functionally distinct from those in the central bone marrow. Bone 53(2):575–586CrossRefGoogle Scholar
  12. 12.
    Sun S, Guo Z, Xiao X, Liu B, Liu X, Tang PH et al (2003) Isolation of mouse marrow mesenchymal progenitors by a novel and reliable method. Stem Cells 21(5):527–535CrossRefGoogle Scholar
  13. 13.
    Short BJ, Brouard N, Simmons PJ (2009) Prospective isolation of mesenchymal stem cells from mouse compact bone. Methods Mol Biol 482:259–268CrossRefGoogle Scholar
  14. 14.
    Gerace D, Martiniello-Wilks R, Simpson AM (2015) Persistence of luciferase expressing bone marrow-derived mesenchymal stem cells (BMSCs) in non-obese diabetic (NOD) and NOD/Scid mice (abstract). Mol Ther 23:S101CrossRefGoogle Scholar
  15. 15.
    Gerace D, Martiniello-Wilks R, Habib R, Ren B, Nassif NT, O’Brien BA et al (2019) Ex vivo expansion of murine MSC impairs transcription factor-induced differentiation into pancreatic beta-cells. Stem Cells Int 2019:1–15CrossRefGoogle Scholar
  16. 16.
    Geraerts M, Michiels M, Baekelandt V, Debyser Z, Gijsbers R (2005) Upscaling of lentiviral vector production by tangential flow filtration. J Gene Med 7(10):1299–1310CrossRefGoogle Scholar
  17. 17.
    Ren B, O’Brien BA, Byrne MR, Ch’ng E, Gatt PN, Swan MA et al (2013) Long-term reversal of diabetes in non-obese diabetic mice by liver-directed gene therapy. J Gene Med 15(1):28–41CrossRefGoogle Scholar
  18. 18.
    Gerace D, Ren B, Hawthorne WJ, Byrne MR, Phillips PM, O’Brien BA et al (2013) Pancreatic transdifferentiation in porcine liver following lentiviral delivery of human furin-cleavable insulin. Transplant Proc 45(5):1869–1874CrossRefGoogle Scholar
  19. 19.
    National Health and Medical Research Council (2013) Australian code for the care and use of animals for scientific purposes, 8th edition. Canberra: National Health and Medical Research CouncilGoogle Scholar
  20. 20.
    Groskreutz DJ, Sliwkowski MX, Gorman CM (1994) Genetically engineered proinsulin constitutively processed and secreted as mature, active insulin. J Biol Chem 269(8):6241–6245PubMedGoogle Scholar
  21. 21.
    Choi JK, Hoang N, Vilardi AM, Conrad P, Emerson SG, Gewirtz AM (2001) Hybrid HIV/MSCV LTR enhances transgene expression of lentiviral vectors in human CD34(+) hematopoietic cells. Stem Cells 19(3):236–246CrossRefGoogle Scholar
  22. 22.
    Ren B, O’Brien BA, Swan MA, Koina ME, Nassif N, Wei MQ et al (2007) Long-term correction of diabetes in rats after lentiviral hepatic insulin gene therapy. Diabetologia 50(9):1910–1920CrossRefGoogle Scholar
  23. 23.
    Wang XY, Martiniello-Wilks R, Shaw JM, Ho T, Coulston N, Cooke-Yarborough C et al (2004) Preclinical evaluation of a prostate-targeted gene-directed enzyme prodrug therapy delivered by ovine atadenovirus. Gene Ther 11(21):1559–1567CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Dario Gerace
    • 1
    • 2
  • Binhai Ren
    • 1
  • Rosetta Martiniello-Wilks
    • 1
  • Ann M. Simpson
    • 1
    Email author
  1. 1.The School of Life Sciences and Centre for Health TechnologiesUniversity of Technology SydneySydneyAustralia
  2. 2.Department of Stem Cell and Regenerative BiologyHarvard Stem Cell Institute, Harvard UniversityCambridgeUSA

Personalised recommendations