Advertisement

Identification and Analysis of Mouse Erythroid Progenitor Cells

  • Chanukya K. Colonne
  • Jia Hao Yeo
  • Campbell V. McKenzie
  • Stuart T. FraserEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2029)

Abstract

The most common cell type in the human body, the red blood cell or erythrocyte, has a life span of approximately 3 months. To compensate for this massive cellular requirement and short life span, the major blood producing tissues contain vast numbers of erythroid progenitor cells. Erythroid progenitors differentiate progressively from hematopoietic stem cells to committed erythroid progenitors to reticulocytes lacking a nucleus and finally to functionally mature erythrocytes in the circulation. Different erythroid progenitor activity, representative of distinct stages of erythropoiesis, can be observed using semisolid colony assays. Distinct stages of erythroid maturation can also be monitored by flow cytometry. Here, we discuss the range of different technical approaches that are used to identify and quantify erythroid progenitors, with particular focus on the mouse as a model system.

Key words

Red blood cells Erythroid Progenitor Bone marrow Spleen Anemia 

References

  1. 1.
    Maximow A (1909) Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leben der Säugetiere, Folia Haematologica. pp 125–134Google Scholar
  2. 2.
    Lappin TR, Rich IN (1996) Erythropoietin—the first 90 years. Clin Lab Haematol 18:137–145CrossRefGoogle Scholar
  3. 3.
    Mizel SB, Farrar JJ (1979) Revised nomenclature for antigen-nonspecific T cell proliferation and helper factors. Cell Immunol 48(2):433–436CrossRefGoogle Scholar
  4. 4.
    Orkin SH, Zon LI (2008) SnapShot: hematopoiesis. Cell 132:712.e1–712.e2CrossRefGoogle Scholar
  5. 5.
    Al-Drees MA, Yeo JH, Boumelhem BB et al (2015) Making blood: the haematopoietic niche throughout ontogeny. Stem Cells Int 2015:571893CrossRefGoogle Scholar
  6. 6.
    Palis J (2014) Primitive and definitive erythropoiesis in mammals. Front Physiol 5:3CrossRefGoogle Scholar
  7. 7.
    Sanchez M, Weissman IL, Pallavicini M et al (2006) Differential amplification of murine bipotent megakaryocytic/erythroid progenitor and precursor cells during recovery from acute and chronic erythroid stress. Stem Cells 24:337–348CrossRefGoogle Scholar
  8. 8.
    Chen K, Liu J, Heck S et al (2009) Resolving the distinct stages in erythroid differentiation based on dynamic changes in membrane protein expression during erythropoiesis. Proc Natl Acad Sci 106:17413–17418CrossRefGoogle Scholar
  9. 9.
    Kina T, Ikuta K, Takayama E et al (2000) The monoclonal antibody TER-119 recognizes a molecule associated with glycophorin A and specifically marks the late stages of murine erythroid lineage. Br J Haematol 109:280–287CrossRefGoogle Scholar
  10. 10.
    Socolovsky M, Nam H-S, Fleming MD et al (2001) Ineffective erythropoiesis in Stat5a−/−5b−/− mice due to decreased survival of early erythroblasts. Blood 98(12):3261–3273CrossRefGoogle Scholar
  11. 11.
    Koulnis M, Pop R, Porpiglia E et al (2011) Identification and analysis of mouse erythroid progenitors using the CD71/TER119 flow-cytometric assay. J Vis Exp e2809–e2809Google Scholar
  12. 12.
    Fraser ST, Isern J, Baron MH (2007) Maturation and enucleation of primitive erythroblasts during mouse embryogenesis is accompanied by changes in cell-surface antigen expression. Blood 109:343–352CrossRefGoogle Scholar
  13. 13.
    Yeo JH, McAllan BM, Fraser ST (2016) Scanning electron microscopy reveals two distinct classes of erythroblastic island isolated from adult mammalian bone marrow. Microsc Microanal 22:368–378CrossRefGoogle Scholar
  14. 14.
    Palis J, Robertson S, Kennedy M et al (1999) Development of erythroid and myeloid progenitors in the yolk sac and embryo proper of the mouse. Development 126:5073–5084PubMedGoogle Scholar
  15. 15.
    Fraser ST, Midwinter RG, Berger BS et al (2011) Heme oxygenase-1: a critical link between iron metabolism, erythropoiesis, and development. Adv Hematol 2011:1–6CrossRefGoogle Scholar
  16. 16.
    Baron MH, Isern J, Fraser ST (2012) The embryonic origins of erythropoiesis in mammals. Blood 119:4828–4837CrossRefGoogle Scholar
  17. 17.
    Wong PM, Chung SW, Reicheld SM et al (1986) Hemoglobin switching during murine embryonic development: evidence for two populations of embryonic erythropoietic progenitor cells. Blood 67:716–721PubMedGoogle Scholar
  18. 18.
    Isern J, He Z, Fraser ST et al (2011) Single-lineage transcriptome analysis reveals key regulatory pathways in primitive erythroid progenitors in the mouse embryo. Blood 117:4924–4934CrossRefGoogle Scholar
  19. 19.
    Iscove NN, Sieber F (1975) Erythroid progenitors in mouse bone marrow detected by macroscopic colony formation in culture. Exp Hematol 3:32–43PubMedGoogle Scholar
  20. 20.
    Lodish H, Flygare J, Chou S (2010) From stem cell to erythroblast: regulation of red cell production at multiple levels by multiple hormones. IUBMB Life 62:492–496CrossRefGoogle Scholar
  21. 21.
    Stephenson JR, Axelrad AA, McLeod DL et al (1971) Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc Natl Acad Sci U S A 68:1542–1546CrossRefGoogle Scholar
  22. 22.
    Wu H, Liu X, Jaenisch R et al (1995) Generation of committed erythroid BFU-E and CFU-E progenitors does not require erythropoietin or the erythropoietin receptor. Cell 83:59–67CrossRefGoogle Scholar
  23. 23.
    Hattangadi SM, Wong P, Zhang L et al (2011) From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs and chromatin modifications. Blood 118(24):6258–6268CrossRefGoogle Scholar
  24. 24.
    Terszowski G (2005) Prospective isolation and global gene expression analysis of the erythrocyte colony-forming unit (CFU-E). Blood 105:1937–1945CrossRefGoogle Scholar
  25. 25.
    Stumpf M, Waskow C, Krötschel M et al (2006) The mediator complex functions as a coactivator for GATA-1 in erythropoiesis via subunit Med1/TRAP220. Proc Natl Acad Sci U S A 103:18504–18509CrossRefGoogle Scholar
  26. 26.
    Flygare J, Estrada VR, Shin C et al (2011) HIF1 synergizes with glucocorticoids to promote BFU-E progenitor self-renewal. Blood 117:3435–3444CrossRefGoogle Scholar
  27. 27.
    Tusi BK, Wolock SL, Weinreb C et al (2018) Population snapshots predict early haematopoietic and erythroid hierarchies. Nature 555:54–60CrossRefGoogle Scholar
  28. 28.
    Li J, Hale J, Bhagia P et al (2014) Isolation and transcriptome analyses of human erythroid progenitors: BFU-E and CFU-E. Blood 124:3636–3645CrossRefGoogle Scholar
  29. 29.
    Lenox LE, Perry JM, Paulson RF (2005) BMP4 and Madh5 regulate the erythroid response to acute anemia. Blood 105:2741–2748CrossRefGoogle Scholar
  30. 30.
    Perry JM, Harandi OF, Paulson RF (2007) BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. Blood 109:4494–4502CrossRefGoogle Scholar
  31. 31.
    Perry JM, Harandi OF, Porayette P et al (2009) Maintenance of the BMP4-dependent stress erythropoiesis pathway in the murine spleen requires hedgehog signaling. Blood 113:911–918CrossRefGoogle Scholar
  32. 32.
    Socolovsky M (2007) Molecular insights into stress erythropoiesis. Curr Opin Hematol 14:215–224CrossRefGoogle Scholar
  33. 33.
    Porayette P, Paulson RF (2008) BMP4/Smad5 dependent stress erythropoiesis is required for the expansion of erythroid progenitors during fetal development. Dev Biol 317:24–35CrossRefGoogle Scholar
  34. 34.
    Harandi OF, Hedge S, Wu D-C et al (2010) Murine erythroid short-term radioprotection requires a BMP4-dependent, self-renewing population of stress erythroid progenitors. J Clin Invest 120:4507–4519CrossRefGoogle Scholar
  35. 35.
    Xiang J, Wu DC, Chen Y et al (2015) In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors. Blood 125:1803–1812CrossRefGoogle Scholar
  36. 36.
    Antoniou M (1991) Induction of erythroid-specific expression in murine erythroleukemia (MEL) cell lines. Methods Mol Biol 7:421–434PubMedGoogle Scholar
  37. 37.
    Socolovsky M (2001) Ineffective erythropoiesis in Stat5a−/−5b−/− mice due to decreased survival of early erythroblasts. Blood 98:3261–3273CrossRefGoogle Scholar
  38. 38.
    Fraser ST, Isern J, Baron MH (2010) Use of transgenic fluorescent reporter mouse lines to monitor hematopoietic and erythroid development during embryogenesis. Methods Enzymol 476:403–427CrossRefGoogle Scholar
  39. 39.
    Nakano T, Kodama H, Honjo T (1994) Generation of lymphohematopoietic cells from embryonic stem cells in culture. Science 265:1098–1101CrossRefGoogle Scholar
  40. 40.
    Fraser ST, Ogawa M, Yu RT et al (2002) Definitive hematopoietic commitment within the embryonic vascular endothelial-cadherin(+) population. Exp Hematol 30:1070–1078CrossRefGoogle Scholar
  41. 41.
    Schroeder T, Fraser ST, Ogawa M et al (2003) Recombination signal sequence-binding protein Jkappa alters mesodermal cell fate decisions by suppressing cardiomyogenesis. Proc Natl Acad Sci U S A 100:4018–4023CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chanukya K. Colonne
    • 1
  • Jia Hao Yeo
    • 2
  • Campbell V. McKenzie
    • 1
  • Stuart T. Fraser
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Disciplines of Physiology, Faculty of Medicine and Health, School of Medical SciencesUniversity of SydneyCamperdownAustralia
  2. 2.Disciplines of Anatomy and Histology, Faculty of Medicine and Health, School of Medical SciencesUniversity of SydneyCamperdownAustralia
  3. 3.Faculty of Medicine and Health, Bosch InstituteUniversity of SydneyCamperdownAustralia
  4. 4.The University of Sydney Nano InstituteUniversity of SydneyCamperdownAustralia

Personalised recommendations