Advertisement

Phytochromes pp 225-236 | Cite as

Analysis of Physcomitrella Phytochrome Mutants via Phototropism and Polarotropism

  • Anna Lena Ermert
  • Fabian Stahl
  • Tanja Gans
  • Jon HughesEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2026)

Abstract

In mosses such as Physcomitrella patens phytochrome photoreceptors steer directional/vectorial responses to unilateral/polarized light. In this chapter, we describe procedures to assay phototropism and polarotropism quantitatively in wild type and mutant lines. Protonemata are placed on agar-based medium in square Petri dishes in darkness for 1 week, allowing caulonemata to develop and grow negatively gravitropically. For phototropism, the dishes are placed vertically in black boxes and unilaterally irradiated with continuous red light. For polarotropism, Petri dishes are placed horizontally and irradiated with linearly polarized red light from above. After irradiation, the filaments are photographed using a macroscope with CCD camera and the bending angles measured using image processing software. The data are transfered to a spreadsheet program, placed into 10° bending angle classes and illustrated using a circular histogram.

Keywords

Physcomitrella patens Phytochrome mutants Physiology Phototropism Polarotropism 

Notes

Acknowledgments

This work was supported by DFG grant Hu702/5 to JH. We thank Mathias Zeidler for critical reading of the manuscript.

References

  1. 1.
    Li F-W, Melkonian M, Rothfels CJ, Villarreal JC, Stevenson DW, Graham SW, Wong GK-S, Pryer KM, Mathews S (2015) Phytochrome diversity in green plants and the origin of canonical plant phytochromes. Nat Commun 6:7852CrossRefGoogle Scholar
  2. 2.
    Flint LH, McAlister ED (1935) Wave lengths of radiation in the visible spectrum inhibiting the germination of light-sensitive lettuce seed. Smiths Misc Coll 94:1–11Google Scholar
  3. 3.
    Borthwick HA, Hendricks SB, Parker MW, Toole EH, Toole VK (1952) A reversible photoreaction controlling seed germination. Proc Natl Acad Sci U S A 38:662–666CrossRefGoogle Scholar
  4. 4.
    Nagatani A, Kay SA, Deak M, Chua NH, Furuya M (1991) Rice type I phytochrome regulates hypocotyl elongation in transgenic tobacco seedlings. Proc Natl Acad Sci U S A 88:5207–5211CrossRefGoogle Scholar
  5. 5.
    Chen M, Chory J (2011) Phytochrome signaling mechanisms and the control of plant development. Trends Cell Biol 21:664–671CrossRefGoogle Scholar
  6. 6.
    Godnev TN, Akulovich NK, Orlovskaia KI, Domash VI (1966) The influence of the phytochrome system on the formation of pigments in carrot tissue culture. Dokl Akad Nauk SSSR 169:692–694PubMedGoogle Scholar
  7. 7.
    Somers DE, Devlin PF, Kay SA (1998) Phytochromes and cryptochromes in the entrainment of the Arabidopsis circadian clock. Science 282:1488–1490CrossRefGoogle Scholar
  8. 8.
    Searle I, Coupland G (2004) Induction of flowering by seasonal changes in photoperiod. EMBO J 23:1217–1222CrossRefGoogle Scholar
  9. 9.
    Sakamoto K, Nagatani A (1996) Nuclear localization activity of phytochrome B. Plant J 10:859–868CrossRefGoogle Scholar
  10. 10.
    Kircher S, Kozma-Bognar L, Kim L, Adam E, Harter K, Schäfer E, Nagy F (1999) Light quality-dependent nuclear import of the plant photoreceptors phytochrome A and B. Plant Cell 11:1445–1456PubMedPubMedCentralGoogle Scholar
  11. 11.
    Nagy F, Kircher S, Schäfer E (2000) Nucleo-cytoplasmic partitioning of the plant photoreceptors phytochromes. Semin Cell Dev Biol 11:505–510CrossRefGoogle Scholar
  12. 12.
    Kircher S, Gil P, Kozma-Bognár L, Fejes E, Speth V, Husselstein-Müller T, Bauer D, Ádám É, Schäfer E, Nagy F (2002) Nucleocytoplasmic partitioning of the plant photoreceptors phytochrome A, B, C, D, and E is regulated differentially by light and exhibits a diurnal rhythm. Plant Cell 14:1541–1555CrossRefGoogle Scholar
  13. 13.
    Ma L, Li J, Qu L, Hager J, Chen Z, Zhao H, Deng XW (2001) Light control of Arabidopsis development entails coordinated regulation of genome expression and cellular pathways. Plant Cell 13:2589–2607CrossRefGoogle Scholar
  14. 14.
    Hiltbrunner A, Viczián A, Bury E, Tscheuschler A, Kircher S, Tóth R, Honsberger A, Nagy F, Fankhauser C, Schäfer E (2005) Nuclear accumulation of the phytochrome A photoreceptor requires FHY1. Curr Biol 15:2125–2130CrossRefGoogle Scholar
  15. 15.
    Quail PH (2010) Phytochromes. Curr Biol 20:R504–R507CrossRefGoogle Scholar
  16. 16.
    Tepperman JM, Zhu T, Chang HS, Wang X, Quail PH (2001) Multiple transcription-factor genes are early targets of phytochrome A signaling. Proc Natl Acad Sci U S A 98:9437–9442CrossRefGoogle Scholar
  17. 17.
    Tepperman JM, Hwang Y-S, Quail PH (2006) phyA dominates in transduction of red-light signals to rapidly responding genes at the initiation of Arabidopsis seedling de-etiolation. Plant J 48:728–742CrossRefGoogle Scholar
  18. 18.
    Monte E, Tepperman JM, Al-Sady B, Kaczorowski KA, Alonso JM, Ecker JR, Li X, Zhang Y, Quail PH (2004) The phytochrome-interacting transcription factor, PIF3, acts early, selectively, and positively in light-induced chloroplast development. Proc Natl Acad Sci U S A 101:16091–16098CrossRefGoogle Scholar
  19. 19.
    Osterlund MT, Hardtke CS, Wei N, Deng XW (2000) Targeted destabilization of HY5 during light-regulated development of Arabidopsis. Nature 405:462–466CrossRefGoogle Scholar
  20. 20.
    Endo M, Tanigawa Y, Murakami T, Araki T, Nagatani A (2013) PHYTOCHROME-DEPENDENT LATE-FLOWERING accelerates flowering through physical interactions with phytochrome B and CONSTANS. Proc Natl Acad Sci U S A 110:18017–18022CrossRefGoogle Scholar
  21. 21.
    Jenkins GI, Cove DJ (1983) Phototropism and polarotropism of primary chloronemata of the moss Physcomitrella patens: responses of the wild-type. Planta 158:357–364CrossRefGoogle Scholar
  22. 22.
    Cove DJ, Schild A, Ashton NW, Hartmann E (1978) Genetic and physiological studies of the effect of light on the development of the moss, Physcomitrella patens. Photochem Photobiol 27:249–254CrossRefGoogle Scholar
  23. 23.
    Cove D, Knight C (1987) Gravitropism and phototropism in the moss, Physcomitrella patens. Cambridge University Press, LondonGoogle Scholar
  24. 24.
    Hughes J (2013) Phytochrome cytoplasmic signaling. Annu Rev Plant Biol 64:377–402CrossRefGoogle Scholar
  25. 25.
    Mittmann F, Brücker G, Zeidler M, Repp A, Abts T, Hartmann E, Hughes J (2004) Targeted knockout in Physcomitrella reveals direct actions of phytochrome in the cytoplasm. Proc Natl Acad Sci U S A 101:13939–13944CrossRefGoogle Scholar
  26. 26.
    Jaedicke K, Lichtenthäler AL, Meyberg R, Zeidler M, Hughes J (2012) A phytochrome-phototropin light signaling complex at the plasma membrane. Proc Natl Acad Sci U S A 109:12231–12236CrossRefGoogle Scholar
  27. 27.
    Jenkins GI, Cove DJ (1983) Phototropism and polarotropism of primary chloronemata of the moss Physcomitrella patens: responses of mutant strains. Planta 159:432–438CrossRefGoogle Scholar
  28. 28.
    Kasahara M, Kagawa T, Sato Y, Kiyosue T, Wada M (2004) Phototropins mediate blue and red light-induced chloroplast movements in Physcomitrella patens. Plant Physiol 135:1388–1397CrossRefGoogle Scholar
  29. 29.
    Ermert AL, Mailliet K, Hughes J (2016) Holophytochrome-interacting proteins in Physcomitrella: Putative actors in phytochrome cytoplasmic signaling. Front Plant Sci 7:613CrossRefGoogle Scholar
  30. 30.
    Meske V, Ruppert V, Hartmann E (1996) Structural basis for the red light induced repolarization of tip growth in caulonema cells of Ceratodon purpureus. Protoplasma 192:189–198CrossRefGoogle Scholar
  31. 31.
    Meske V, Hartmann E (1995) Reorganization of microfilaments in protonemal tip cells of the moss Ceratodon purpureus during the phototropic response. Protoplasma 188:59–69CrossRefGoogle Scholar
  32. 32.
    Ashton NW, Cove DJ (1977) The isolation and preliminary characterisation of auxotrophic and analogue resistant mutants of the moss, Physcomitrella patens. Mol Gen Genet 154:87–95CrossRefGoogle Scholar
  33. 33.
    Lamparter T, Esch H, Cove D, Hughes J, Hartmann E (1996) Aphototropic mutants of the moss Ceratodon purpureus with spectrally normal and with spectrally dysfunctional phytochrome. Plant Cell Environ 19:560–568CrossRefGoogle Scholar
  34. 34.
    Zeidler M (2016) Physiological analysis of phototropic responses in Arabidopsis. Methods Mol Biol 1398:21–28CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anna Lena Ermert
    • 1
  • Fabian Stahl
    • 1
  • Tanja Gans
    • 1
  • Jon Hughes
    • 1
    Email author
  1. 1.Institute for Plant PhysiologyJustus Liebig UniversityGiessenGermany

Personalised recommendations