Rat Genomics pp 319-326 | Cite as

Behavioral Genetic Studies in Rats

  • Yangsu Ren
  • Abraham A. PalmerEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2018)


In this chapter, we briefly review the use of rats as a genetic model for the study of behavior. Rats were the first mammalian species used for genetic and biological research. Since the development of the first inbred rat strain in 1909, more than 700 unique inbred and outbred rat lines have been generated. Although rats have been somewhat eclipsed by mice in the last few decades, a renewed appreciation of the advantages of rats for behavioral and other types of research is upon us. We briefly review the pertinent characteristics of the rat and highlight the key advantages of using the rat to examine behavioral phenotypes.

Key words

Rats Animal models Inbred Behavior model 


  1. 1.
    Lindsey JR (1979) Historical foundations in the laboratory rat. In: The laboratory rat, vol 1. Academic Press, New York, pp 1–36Google Scholar
  2. 2.
    Yamada J, Nikaido H, Matsumoto S (1979) Genetic variability within and between outbred Wistar strains of rats. Jikken Dobutsu 28(2):259–265PubMedGoogle Scholar
  3. 3.
    Delves PJ, Roitt IM (1998) Encyclopedia of immunology, 2nd edn. Academic Press, San Diego, p 4Google Scholar
  4. 4.
    Shepard JF (1933) Higher processes in the behavior of rats. Proc Natl Acad Sci U S A 19:149–152PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Hall C, Ballachey EL (1932) A study of the rat’s behavior in a field. A contribution to method in comparative psychology, University of California publications in psychology, vol 6. University of California Press, Berkeley, CA, pp 1–12Google Scholar
  6. 6.
    Gordon JW, Ruddle FH (1981) Integration and stable germ line transmission of genes injected into mouse pronuclei. Science 214(4526):1244–1246PubMedCrossRefGoogle Scholar
  7. 7.
    Thomas KR, Capecchi MR (1987) Site-directed mutagenesis by gene targeting in mouse embryo-derived stem cells. Cell 51(3):503–512PubMedCrossRefGoogle Scholar
  8. 8.
    Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P et al (2002) Initial sequencing and comparative analysis of the mouse genome. Nature 420(6915):520–562PubMedCrossRefGoogle Scholar
  9. 9.
    Austin CP, Battey JF, Bradley A, Bucan M, Capecchi M, Collins FS et al (2004) The knockout mouse project. Nat Genet 36(9):921–924PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Munoz-Fuentes V, Cacheiro P, Meehan TF, Aguilar-Pimentel J, Brown SDM, Flenniken AM et al (2018) The International Mouse Phenotyping Consortium (IMPC): a functional catalogue of the mammalian genome that informs conservation. Conserv Genet 19(4):995–1005PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Parker CC, Chen H, Flagel SB, Geurts AM, Richards JB, Robinson TE et al (2014) Rats are the smart choice: rationale for a renewed focus on rats in behavioral genetics. Neuropharmacology 76(Pt B):250–258PubMedCrossRefGoogle Scholar
  12. 12.
    Gibbs RA, Weinstock GM, Metzker ML, Muzny DM, Sodergren EJ, Scherer S et al (2004) Genome sequence of the Brown Norway rat yields insights into mammalian evolution. Nature 428(6982):493–521PubMedCrossRefGoogle Scholar
  13. 13.
    Mullins LJ, Mullins JJ (2004) Insights from the rat genome sequence. Genome Biol 5(5):221PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Zan Y, Haag JD, Chen KS, Shepel LA, Wigington D, Wang YR et al (2003) Production of knockout rats using ENU mutagenesis and a yeast-based screening assay. Nat Biotechnol 21(6):645–651PubMedCrossRefGoogle Scholar
  15. 15.
    Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Cui X, Ji D, Fisher DA, Wu Y, Briner DM, Weinstein EJ (2011) Targeted integration in rat and mouse embryos with zinc-finger nucleases. Nat Biotechnol 29(1):64–67PubMedCrossRefGoogle Scholar
  17. 17.
    Tong C, Huang G, Ashton C, Li P, Ying QL (2011) Generating gene knockout rats by homologous recombination in embryonic stem cells. Nat Protoc 6(6):827–844PubMedCrossRefGoogle Scholar
  18. 18.
    Shao Y, Guan Y, Wang L, Qiu Z, Liu M, Chen Y et al (2014) CRISPR/Cas-mediated genome editing in the rat via direct injection of one-cell embryos. Nat Protoc 9(10):2493–2512PubMedCrossRefGoogle Scholar
  19. 19.
    Kjell J, Olson L (2016) Rat models of spinal cord injury: from pathology to potential therapies. Dis Model Mech 9(10):1125–1137PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Meijer MK, Sommer R, Spruijt BM, van Zutphen LF, Baumans V (2007) Influence of environmental enrichment and handling on the acute stress response in individually housed mice. Lab Anim 41(2):161–173PubMedCrossRefGoogle Scholar
  21. 21.
    Feduccia AA, Duvauchelle CL (2010) Novel apparatus and method for drug reinforcement. J Vis Exp.
  22. 22.
    Kokare DM, Shelkar GP, Borkar CD, Nakhate KT, Subhedar NK (2011) A simple and inexpensive method to fabricate a cannula system for intracranial injections in rats and mice. J Pharmacol Toxicol Methods 64(3):246–250PubMedCrossRefGoogle Scholar
  23. 23.
    Barandov A, Bartelle BB, Gonzalez BA, White WL, Lippard SJ, Jasanoff A (2016) Membrane-permeable Mn(III) complexes for molecular magnetic resonance imaging of intracellular targets. J Am Chem Soc 138(17):5483–5486PubMedCrossRefGoogle Scholar
  24. 24.
    Zimmer ER, Leuzy A, Bhat V, Gauthier S, Rosa-Neto P (2014) In vivo tracking of tau pathology using positron emission tomography (PET) molecular imaging in small animals. Transl Neurodegener 3(1):6PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kim HY, Seo K, Jeon HJ, Lee U, Lee H (2017) Application of functional near-infrared spectroscopy to the study of brain function in humans and animal models. Mol Cells 40(8):523–532PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Febo M (2011) Technical and conceptual considerations for performing and interpreting functional MRI studies in awake rats. Front Psychiatry 2:43PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Hirst WD, Abrahamsen B, Blaney FE, Calver AR, Aloj L, Price GW et al (2003) Differences in the central nervous system distribution and pharmacology of the mouse 5-hydroxytryptamine-6 receptor compared with rat and human receptors investigated by radioligand binding, site-directed mutagenesis, and molecular modeling. Mol Pharmacol 64(6):1295–1308PubMedCrossRefGoogle Scholar
  28. 28.
    Lazarov O, Hollands C (2016) Hippocampal neurogenesis: learning to remember. Prog Neurobiol 138–140:1–18PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Snyder JS, Radik R, Wojtowicz JM, Cameron HA (2009) Anatomical gradients of adult neurogenesis and activity: young neurons in the ventral dentate gyrus are activated by water maze training. Hippocampus 19(4):360–370PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Stieglitz RD (2000) Diagnostic and statistical manual of mental disorders. Z Klin Psychol-Forsc 29(1):63–64CrossRefGoogle Scholar
  31. 31.
    Deroche-Gamonet V, Belin D, Piazza PV (2004) Evidence for addiction-like behavior in the rat. Science 305(5686):1014–1017PubMedCrossRefGoogle Scholar
  32. 32.
    Wise RA (1996) Addictive drugs and brain stimulation reward. Annu Rev Neurosci 19:319–340PubMedCrossRefGoogle Scholar
  33. 33.
    Tzschentke TM (2007) Measuring reward with the conditioned place preference (CPP) paradigm: update of the last decade. Addict Biol 12(3–4):227–462PubMedCrossRefGoogle Scholar
  34. 34.
    O’Connor EC, Chapman K, Butler P, Mead AN (2011) The predictive validity of the rat self-administration model for abuse liability. Neurosci Biobehav Rev 35(3):912–938PubMedCrossRefGoogle Scholar
  35. 35.
    Panlilio LV, Goldberg SR (2007) Self-administration of drugs in animals and humans as a model and an investigative tool. Addiction 102(12):1863–1870PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Ahmed SH, Koob GF (1999) Long-lasting increase in the set point for cocaine self-administration after escalation in rats. Psychopharmacology (Berl) 146(3):303–312CrossRefGoogle Scholar
  37. 37.
    Paterson NE, Markou A (2003) Increased motivation for self-administered cocaine after escalated cocaine intake. Neuroreport 14(17):2229–2232PubMedCrossRefGoogle Scholar
  38. 38.
    Kippin TE, Fuchs RA, See RE (2006) Contributions of prolonged contingent and noncontingent cocaine exposure to enhanced reinstatement of cocaine seeking in rats. Psychopharmacology (Berl) 187(1):60–67CrossRefGoogle Scholar
  39. 39.
    Vanderschuren LJ, Everitt BJ (2004) Drug seeking becomes compulsive after prolonged cocaine self-administration. Science 305(5686):1017–1019PubMedCrossRefGoogle Scholar
  40. 40.
    Wise RA (1973) Voluntary ethanol intake in rats following exposure to ethanol on various schedules. Psychopharmacologia 29(3):203–210PubMedCrossRefGoogle Scholar
  41. 41.
    Wolffgramm J, Heyne A (1995) From controlled drug intake to loss of control: the irreversible development of drug addiction in the rat. Behav Brain Res 70(1):77–94PubMedCrossRefGoogle Scholar
  42. 42.
    Heyne A, Wolffgramm J (1998) The development of addiction to d-amphetamine in an animal model: same principles as for alcohol and opiate. Psychopharmacology 140(4):510–518PubMedCrossRefGoogle Scholar
  43. 43.
    Heyne A (1996) The development of opiate addiction in the rat. Pharmacol Biochem Behav 53(1):11–25PubMedCrossRefGoogle Scholar
  44. 44.
    Vestal BM (1977) Sociability and individual distance in four species of rodents. Proc Oklahoma Acad Sci 57:98–102Google Scholar
  45. 45.
    Fritz M, El Rawas R, Klement S, Kummer K, Mayr MJ, Eggart V et al (2011) Differential effects of accumbens core vs. shell lesions in a rat concurrent conditioned place preference paradigm for cocaine vs. social interaction. PLoS One 6(10):e26761PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kummer KK, Hofhansel L, Barwitz CM, Schardl A, Prast JM, Salti A et al (2014) Differences in social interaction- vs. cocaine reward in mouse vs. rat. Front Behav Neurosci 8:363PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Venniro M, Zhang M, Caprioli D, Hoots JK, Golden SA, Heins C et al (2018) Volitional social interaction prevents drug addiction in rat models. Nat Neurosci 21(11):1520–1529PubMedCrossRefGoogle Scholar
  48. 48.
    Moeller FG, Barratt ES, Dougherty DM, Schmitz JM, Swann AC (2001) Psychiatric aspects of impulsivity. Am J Psychiatry 158(11):1783–1793PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Alessi SM, Petry NM (2003) Pathological gambling severity is associated with impulsivity in a delay discounting procedure. Behav Process 64(3):345–354CrossRefGoogle Scholar
  50. 50.
    Mitchell SH (1999) Measures of impulsivity in cigarette smokers and non-smokers. Psychopharmacology (Berl) 146(4):455–464CrossRefGoogle Scholar
  51. 51.
    Bickel WK, Marsch LA (2001) Toward a behavioral economic understanding of drug dependence: delay discounting processes. Addiction 96(1):73–86PubMedCrossRefGoogle Scholar
  52. 52.
    Neef NA, Marckel J, Ferreri SJ, Bicard DF, Endo S, Aman MG et al (2005) Behavioral assessment of impulsivity: a comparison of children with and without attention deficit hyperactivity disorder. J Appl Behav Anal 38(1):23–37PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Winstanley CA (2011) The utility of rat models of impulsivity in developing pharmacotherapies for impulse control disorders. Br J Pharmacol 164(4):1301–1321PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Moreno M, Cardona D, Gómez MJ, Sánchez-Santed F, Tobeña A, Fernández-Teruel A et al (2010) Impulsivity characterization in the Roman high- and low-avoidance rat strains: behavioral and neurochemical differences. Neuropsychopharmacology 35(5):1198–1208PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Adriani W, Caprioli A, Granstrem O, Carli M, Laviola G (2003) The spontaneously hypertensive-rat as an animal model of ADHD: evidence for impulsive and non-impulsive subpopulations. Neurosci Biobehav Rev 27(7):639–651PubMedCrossRefGoogle Scholar
  56. 56.
    Aparicio CF, Hennigan PJ, Mulligan LJ, Alonso-Alvarez B (2019) Spontaneously hypertensive (SHR) rats choose more impulsively than Wistar-Kyoto (WKY) rats on a delay discounting task. Behav Brain Res 364:480–493. Scholar
  57. 57.
    Richards JB, Zhang L, Mitchell SH, de Wit H (1999) Delay or probability discounting in a model of impulsive behavior: effect of alcohol. J Exp Anal Behav 71(2):121–143PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Bushnell PJ (2001) Advanced behavioral testing in rodents: assessment of cognitive function in animals. Curr Protoc Toxicol Chapter 11:Unit 11.4Google Scholar
  59. 59.
    Morris R (1984) Developments of a water-maze procedure for studying spatial learning in the rat. J Neurosci Methods 11(1):47–60PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Vorhees CV, Williams MT (2006) Morris water maze: procedures for assessing spatial and related forms of learning and memory. Nat Protoc 1(2):848–858PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Brain Res Rev 36(1):60–90PubMedCrossRefGoogle Scholar
  62. 62.
    Whishaw IQ, Tomie J (1996) Of mice and mazes: similarities between mice and rats on dry land but not water mazes. Physiol Behav 60(5):1191–1197PubMedCrossRefGoogle Scholar
  63. 63.
    Colacicco G, Welzl H, Lipp HP, Wurbel H (2002) Attentional set-shifting in mice: modification of a rat paradigm, and evidence for strain-dependent variation. Behav Brain Res 132(1):95–102PubMedCrossRefGoogle Scholar
  64. 64.
    Jaramillo S, Zador AM (2014) Mice and rats achieve similar levels of performance in an adaptive decision-making task. Front Syst Neurosci 8:173PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Prusky GT, West PW, Douglas RM (2000) Behavioral assessment of visual acuity in mice and rats. Vis Res 40(16):2201–2209PubMedCrossRefGoogle Scholar
  66. 66.
    McLay RN, Freeman SM, Harlan RE, Kastin AJ, Zadina JE (1999) Tests used to assess the cognitive abilities of aged rats: their relation to each other and to hippocampal morphology and neurotrophin expression. Gerontology 45(3):143–155PubMedCrossRefGoogle Scholar
  67. 67.
    Stubley-Weatherly L, Harding JW, Wright JW (1996) Effects of discrete kainic acid-induced hippocampal lesions on spatial and contextual learning and memory in rats. Brain Res 716(1–2):29–38PubMedCrossRefGoogle Scholar
  68. 68.
    Jarrard LE (1993) On the role of the hippocampus in learning and memory in the rat. Behav Neural Biol 60(1):9–26PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PsychiatryUniversity of California San DiegoLa JollaUSA
  2. 2.Institute for Genomic MedicineUniversity of California San DiegoLa JollaUSA

Personalised recommendations