A Microcavity Array-Based 3D Model System of the Hematopoietic Stem Cell Niche

  • Eric GottwaldEmail author
  • Cordula Nies
  • Patrick Wuchter
  • Rainer Saffrich
  • Roman Truckenmüller
  • Stefan Giselbrecht
Part of the Methods in Molecular Biology book series (MIMB, volume 2017)


Despite huge advances in recent years, the interaction between hematopoietic stem and progenitor cells (HSPCs) and their niches in the bone marrow is still far from being fully understood. One reason is that hematopoiesis is a multi-step maturation process leading to HSPC heterogeneity. Subpopulations of HSPCs can be identified by clonogenic assays or in serial transplantation experiments in mice following sublethal irradiation, but it is very complex to reproduce or even maintain stem cell plasticity in vitro. Advanced model systems have been developed that allow to precisely control and analyze key components of the physiologic microenvironment for not only fundamental research purposes but, as a long-term goal, also for clinical applications. In this chapter, we describe our approach of building an artificial hematopoietic stem cell niche in the form of polymer film-based microcavities with a diameter of 300 μm and a depth of up to 300 μm and arranged in a 634-cavity array. The polymer films are provided with 3 μm pores and thus allow perfusion of the culture medium. The microcavity arrays can be inserted into a microbioreactor where a closed circulation loop can be tightly controlled with regard to medium flow and gas supply. The microcavity arrays were used for a three-dimensional (3D) co-culture of MSCs and HSPCs in a defined ratio over a time period of up to 21 days. With this setup, it could be demonstrated that the HSPCs maintained their stem cell characteristics more efficiently as compared to conventional monolayer co-culture controls.

Key words

Microthermoforming Microcavity array MSC-HSPC co-culture Perfusion Microbioreactor 


  1. 1.
    Till JE, Mc Culloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222CrossRefGoogle Scholar
  2. 2.
    Worton RG, McCulloch EA, Till JE (1969) Physical separation of hemopoietic stem cells differing in their capacity for self-renewal. J Exp Med 130(1):91–103CrossRefGoogle Scholar
  3. 3.
    Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91(3):335–344CrossRefGoogle Scholar
  4. 4.
    Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4(1–2):7–25PubMedGoogle Scholar
  5. 5.
    Lord BI, Testa NG, Hendry JH (1975) The relative spatial distributions of CFUs and CFUc in the normal mouse femur. Blood 46(1):65–72PubMedGoogle Scholar
  6. 6.
    Gong JK (1978) Endosteal marrow: a rich source of hematopoietic stem cells. Science 199(4336):1443–1445CrossRefGoogle Scholar
  7. 7.
    Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC, Martin RP, Schipani E, Divieti P, bringhurst FR, Milner LA, Kronenberg HM, Scadden DT (2003) Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 425(6960):841–846CrossRefGoogle Scholar
  8. 8.
    Zhang J, Niu C, Ye L, Huang H, He X, Tong WG, Ross J, Haug J, Johnson T, Fend JQ, Harris S, Wiedemann LM, Mishina Y, Li L (2003) Identification of the haematopoietic stem cell niche and control of the niche size. Nature 425(6960):836–841CrossRefGoogle Scholar
  9. 9.
    Kiel MJ, Yilmaz OH, Iwashita T, Yilmaz OH, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121(7):1109–1121CrossRefGoogle Scholar
  10. 10.
    Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334CrossRefGoogle Scholar
  11. 11.
    Yu VW, Scadden DT (2016) Hematopoietic stem cell and its bone marrow niche. Curr Top Dev Biol 118:21–44CrossRefGoogle Scholar
  12. 12.
    Wei Q, Frenette PS (2018) Niches for hematopoietic stem cells and their progeny. Immunity 48(4):632–648CrossRefGoogle Scholar
  13. 13.
    Ugarte F, Forsberg EC (2013) Haematopoietic stem cell niches: new insights inspire new questions. EMBO J 32(19):2535–2547CrossRefGoogle Scholar
  14. 14.
    Mokhtari S, Baptista PM, Vyas DA, Freeman CJ, Moran E, Brovold M, Llamazares GA, Lamar Z, Porada CD, Soker S, Almeida-Porada G (2018) Evaluating interaction of cord blood hematopoietic stem/progenitor cells with functionally integrated three-dimensional microenvironments. Stem Cells Transl Med 7(3):271–282CrossRefGoogle Scholar
  15. 15.
    Nies C, Gottwald E (2017) Artificial hematopoietic stem cell niches–dimensionality matters. Adv Tissue Eng Regen Med Open Access 2(5):236–247Google Scholar
  16. 16.
    Shen H, Yu H, Liang PH, Cheng H, XuFeng R, Yuan Y, Zhang P, Smith CA, Chend T (2012) An acute negative bystander effect of gamma-irradiated recipients on transplanted hematopoietic stem cells. Blood 119(15):3629–3736CrossRefGoogle Scholar
  17. 17.
    Choi JS, Mahadik BP, Harley BA (2015) Engineering the hematopoietic stem cell niche: Frontiers in biomaterial science. Biotechnol J 10(10):1529–1545CrossRefGoogle Scholar
  18. 18.
    Bello AB, Park H, Lee SH (2018) Current approaches in biomaterial-based hematopoietic stem cell niches. Acta Biomater 72:1–15CrossRefGoogle Scholar
  19. 19.
    Wuchter P, Saffrich R, Giselbrecht S, Nies C, Lorig H, Kolb S, Ho AD, Gottwald E (2016) Microcavity arrays as an in vitro model system of the bone marrow niche for hematopoietic stem cells. Cell Tissue Res 364(3):573–584CrossRefGoogle Scholar
  20. 20.
    Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop DJ, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4):315–317CrossRefGoogle Scholar
  21. 21.
    Wuchter P, Vetter M, Saffrich R, Diehlmann A, Bieback K, Ho AD, Horn P (2016) Evaluation of GMP-compliant culture media for in vitro expansion of human bone marrow mesenchymal stromal cells. Exp Hematol 44(6):508–518CrossRefGoogle Scholar
  22. 22.
    Wuchter P, Boda-Heggemann J, Straub BK, Grund C, Kuhn C, Krause U, Seckinger A, Peitsch WK, Spring H, Ho AD, Franke WW (2007) Processus and recessus adhaerentes: giant adherens cell junction systems connect and attract human mesenchymal stem cells. Cell Tissue Res 328(3):499–514CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Eric Gottwald
    • 1
    Email author
  • Cordula Nies
    • 1
  • Patrick Wuchter
    • 2
    • 3
  • Rainer Saffrich
    • 4
    • 3
    • 5
  • Roman Truckenmüller
    • 6
  • Stefan Giselbrecht
    • 6
  1. 1.Institute of Functional InterfacesKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany
  2. 2.Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
  3. 3.German Red Cross Blood Service Baden-Württemberg — HessenMaastrichtThe Netherlands
  4. 4.Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
  5. 5.Department of Medicine V (Hematology, Oncology, Rheumatology)Heidelberg UniversityHeidelbergGermany
  6. 6.Department of Complex Tissue Regeneration, MERLN Institute for Technology-Inspired Regenerative MedicineMaastricht UniversityMaastrichtThe Netherlands

Personalised recommendations