Microfluidic Shear Force Assay to Determine Cell Adhesion Forces

  • Julia Hümmer
  • Julian Koc
  • Axel Rosenhahn
  • Cornelia Lee-ThedieckEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2017)


Cell adhesion is implicated in many physiological settings such as the retention of hematopoietic stem cells (HSCs) in their bone marrow niches or their migration into the bloodstream. During HSC mobilization these adhesion sites are cleaved and have to be newly formed during HSC homing and engraftment. To determine the adhesive properties of HSCs on different extracellular matrix (ECM) molecules, we present a microfluidic shear force assay, where a laminar flow is used to detach a semi-adherent cell population, the HSC model cell line KG-1a, from an ECM protein-coated substrate. This technique combines the high throughput of population-based assays with the ability to observe cell detachment in real time. Additionally, it is suitable for weakly adherent cells, as the setup allows cell incubation on various substrates and application of shear stress ranging several orders of magnitude in one setup without additional washing or transfer steps. As a measure for the adhesion strength of the studied cell population on the substrate, the critical shear force τ50 is determined which is required to remove 50% of the initially adherent cell fraction.

Key words

Microfluidic assay Shear force Cell adhesion Leukemic cells Protein coating 


  1. 1.
    Hines M, Nielsen L, Cooper-White J (2008) The hematopoietic stem cell niche: what are we trying to replicate? J Chem Technol Biotechnol 83(4):421–443CrossRefGoogle Scholar
  2. 2.
    Ellis SJ, Tanentzapf G (2010) Integrin-mediated adhesion and stem-cell-niche interactions. Cell Tissue Res 339(1):121–130PubMedCrossRefGoogle Scholar
  3. 3.
    Lee-Thedieck C, Spatz JP (2014) Biophysical regulation of hematopoietic stem cells. Biomater Sci 2(11):1548–1561CrossRefGoogle Scholar
  4. 4.
    Legate KR, Wickstrom SA, Fässler R (2009) Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev 23(4):397–418PubMedCrossRefGoogle Scholar
  5. 5.
    Franke K, Pompe T, Bornhäuser M, Werner C (2007) Engineered matrix coatings to modulate the adhesion of CD133+ human hematopoietic progenitor cells. Biomaterials 28(5):836–843PubMedCrossRefGoogle Scholar
  6. 6.
    Kurth I, Franke K, Pompe T, Bornhäuser M, Werner C (2011) Extracellular matrix functionalized microcavities to control hematopoietic stem and progenitor cell fate. Macromol Biosci 11(6):739–747PubMedCrossRefGoogle Scholar
  7. 7.
    Sagar BM, Rentala S, Gopal PN, Sharma S, Mukhopadhyay A (2006) Fibronectin and laminin enhance engraftibility of cultured hematopoietic stem cells. Biochem Biophys Res Commun 350(4):1000–1005PubMedCrossRefGoogle Scholar
  8. 8.
    Yokota T, Oritani K, Mitsui H, Aoyama K, Ishikawa J, Sugahara H, Matsumura I, Tsai S, Tomiyama Y, Kanakura Y, Matsuzawa Y (1998) Growth-supporting activities of fibronectin on hematopoietic stem/progenitor cells in vitro and in vivo: structural requirement for fibronectin activities of CS1 and cell-binding domains. Blood 91(9):3263–3272PubMedGoogle Scholar
  9. 9.
    Greenbaum AM, Link DC (2011) Mechanisms of G-CSF-mediated hematopoietic stem and progenitor mobilization. Leukemia 25(2):211–217PubMedCrossRefGoogle Scholar
  10. 10.
    Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30(9):973–981PubMedCrossRefGoogle Scholar
  11. 11.
    Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N, Sandbank J, Zipori D, Lapidot T (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3(7):687–694PubMedCrossRefGoogle Scholar
  12. 12.
    Klein G, Schmal O, Aicher WK (2015) Matrix metalloproteinases in stem cell mobilization. Matrix Biol 44-46C:175–183CrossRefGoogle Scholar
  13. 13.
    Springer TA (1994) Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell 76(2):301–314PubMedCrossRefGoogle Scholar
  14. 14.
    Sahin AO, Buitenhuis M (2012) Molecular mechanisms underlying adhesion and migration of hematopoietic stem cells. Cell Adhes Migr 6(1):39–48CrossRefGoogle Scholar
  15. 15.
    Zannettino A, C Berndt M, Butcher E, Butcher C, Vadas M, Simmons P (1995) Primitive human hematopoietic progenitors adhere to P-selectin (CD62P). Blood 85(12):3466–3477PubMedGoogle Scholar
  16. 16.
    Mazo IB, Gutierrez-Ramos JC, Frenette PS, Hynes RO, Wagner DD, von Andrian UH (1998) Hematopoietic progenitor cell rolling in bone marrow microvessels: parallel contributions by endothelial selectins and vascular cell adhesion molecule 1. J Exp Med 188(3):465–474PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Khalili AA, Ahmad MR (2015) A review of cell adhesion studies for biomedical and biological applications. Int J Mol Sci 16(8):18149–18184PubMedCrossRefGoogle Scholar
  18. 18.
    Christ KV, Turner KT (2010) Methods to measure the strength of cell adhesion to substrates. J Adhes Sci Technol 24(13–14):2027–2058CrossRefGoogle Scholar
  19. 19.
    Athanasiou KA, Thoma BS, Lanctot DR, Shin D, Agrawal CM, LeBaron RG (1999) Development of the cytodetachment technique to quantify mechanical adhesiveness of the single cell. Biomaterials 20(23–24):2405–2415PubMedCrossRefGoogle Scholar
  20. 20.
    Hochmuth RM (2000) Micropipette aspiration of living cells. J Biomech 33(1):15–22PubMedCrossRefGoogle Scholar
  21. 21.
    Garcia AJ, Gallant ND (2003) Stick and grip: measurement systems and quantitative analyses of integrin-mediated cell adhesion strength. Cell Biochem Biophys 39(1):61–73PubMedCrossRefGoogle Scholar
  22. 22.
    Chen Y, Lu B, Yang Q, Fearns C, Yates JR 3rd, Lee JD (2009) Combined integrin phosphoproteomic analyses and small interfering RNA--based functional screening identify key regulators for cancer cell adhesion and migration. Cancer Res 69(8):3713–3720PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Elineni KK, Gallant ND (2011) Regulation of cell adhesion strength by peripheral focal adhesion distribution. Biophys J 101(12):2903–2911PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Giacomello E, Neumayer J, Colombatti A, Perris R (1999) Centrifugal assay for fluorescence-based cell adhesion adapted to the analysis of ex vivo cells and capable of determining relative binding strengths. BioTechniques 26(4):758–762. 764–756PubMedCrossRefGoogle Scholar
  25. 25.
    Channavajjala LS, Eidsath A, Saxinger WC (1997) A simple method for measurement of cell-substrate attachment forces: application to HIV-1 Tat. J Cell Sci 110(Pt 2):249–256PubMedGoogle Scholar
  26. 26.
    Horbett T, Waldburger J, Ratner B, Hoffman A (1988) Cell adhesion to a series of hydrophili–hydrophobic copolymers studies with a spinning disc apparatus. J Biomed Mat Res Part A 22(5):383–404CrossRefGoogle Scholar
  27. 27.
    Lotz MM, Burdsal CA, Erickson HP, McClay DR (1989) Cell adhesion to fibronectin and tenascin: quantitative measurements of initial binding and subsequent strengthening response. J Cell Biol 109(4 Pt 1):1795–1805PubMedCrossRefGoogle Scholar
  28. 28.
    Christophis C, Grunze M, Rosenhahn A (2010) Quantification of the adhesion strength of fibroblast cells on ethylene glycol terminated self-assembled monolayers by a microfluidic shear force assay. Phys Chem Chem Phys 12(17):4498–4504PubMedCrossRefGoogle Scholar
  29. 29.
    Goldstein AS, Dimilla PA (1997) Application of fluid mechanic and kinetic models to characterize mammalian cell detachment in a radial-flow chamber. Biotechnol Bioeng 55(4):616–629PubMedCrossRefGoogle Scholar
  30. 30.
    Christophis C, Sekeroglu K, Demirel G, Thome I, Grunze M, Demirel M, Rosenhahn A (2011) Fibroblast adhesion on unidirectional polymeric nanofilms. Biointerphases 6(4):158–163PubMedCrossRefGoogle Scholar
  31. 31.
    Lu H, Koo LY, Wang WM, Lauffenburger DA, Griffith LG, Jensen KF (2004) Microfluidic shear devices for quantitative analysis of cell adhesion. Anal Chem 76(18):5257–5264PubMedCrossRefGoogle Scholar
  32. 32.
    Hanke M, Hoffmann I, Christophis C, Schubert M, Hoang VT, Zepeda-Moreno A, Baran N, Eckstein V, Wuchter P, Rosenhahn A, Ho AD (2014) Differences between healthy hematopoietic progenitors and leukemia cells with respect to CD44 mediated rolling versus adherence behavior on hyaluronic acid coated surfaces. Biomaterials 35(5):1411–1419PubMedCrossRefGoogle Scholar
  33. 33.
    Christophis C, Taubert I, Meseck GR, Schubert M, Grunze M, Ho AD, Rosenhahn A (2011) Shear stress regulates adhesion and rolling of CD44+ leukemic and hematopoietic progenitor cells on hyaluronan. Biophys J 101(3):585–593PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Deen WM (1998) Analysis of transport phenomena. Oxford University Press, New YorkGoogle Scholar
  35. 35.
    Rinker KD, Prabhakar V, Truskey GA (2001) Effect of contact time and force on monocyte adhesion to vascular endothelium. Biophys J 80(4):1722–1732PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Julia Hümmer
    • 1
    • 2
  • Julian Koc
    • 3
  • Axel Rosenhahn
    • 3
  • Cornelia Lee-Thedieck
    • 1
    • 2
    Email author
  1. 1.Institute of Functional InterfacesKarlsruhe Institute of Technology (KIT)Eggenstein-LeopoldshafenGermany
  2. 2.Institute of Cell Biology and BiophysicsLeibniz University HannoverHannoverGermany
  3. 3.Analytical Chemistry-BiointerfacesRuhr University BochumBochumGermany

Personalised recommendations