Advertisement

Mobilization and Collection of Peripheral Blood Stem Cells in Adults: Focus on Timing and Benchmarking

  • Katharina Kriegsmann
  • Patrick WuchterEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2017)

Abstract

Peripheral blood stem cells (PBSCs) are preferentially used as a hematopoietic stem cell source for autologous blood stem cell transplantation (ABSCT) upon high-dose chemotherapy (HDT) in a variety of hemato-oncologic diseases. As a prerequisite, hematopoietic stem cells have to be mobilized into the peripheral blood (PB) and collected by leukapheresis (LP). Despite continuous improvements, e.g., the introduction of plerixafor, current challenges are the further optimization regarding the leukapheresis procedure, preventing collection failures, as well as benchmarking and harmonization of mobilization approaches between institutions.

This chapter summarizes the current PBSC mobilization and collection approaches and is focusing on timely orchestration of mobilization therapy, granulocyte colony-stimulating factor (G-CSF) application, and peripheral blood (PB) CD34+ cell assessment. Moreover, strategies for prediction and performance assessment of the PBSC collection yield are discussed.

Key words

Leukapheresis PBSC Timing Benchmarking 

References

  1. 1.
    Passweg JR, Baldomero H, Gratwohl A, Bregni M, Cesaro S, Dreger P et al (2012) The EBMT activity survey: 1990-2010. Bone Marrow Transplant 47(7):906–923PubMedCrossRefGoogle Scholar
  2. 2.
    Ljungman P, Urbano-Ispizua A, Cavazzana-Calvo M, Demirer T, Dini G, Einsele H et al (2006) Allogeneic and autologous transplantation for haematological diseases, solid tumours and immune disorders: definitions and current practice in Europe. Bone Marrow Transplant 37(5):439–449PubMedCrossRefGoogle Scholar
  3. 3.
    Passweg JR, Baldomero H, Bader P, Bonini C, Cesaro S, Dreger P et al (2016) Hematopoietic stem cell transplantation in Europe 2014: more than 40 000 transplants annually. Bone Marrow Transplant 51(6):786–792PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Schmitz N, Linch DC, Dreger P, Goldstone AH, Boogaerts MA, Ferrant A et al (1996) Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet 347(8998):353–357PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Roberts MM, To LB, Gillis D, Mundy J, Rawling C, Ng K et al (1993) Immune reconstitution following peripheral blood stem cell transplantation, autologous bone marrow transplantation and allogeneic bone marrow transplantation. Bone Marrow Transplant 12(5):469–475PubMedGoogle Scholar
  6. 6.
    To LB, Roberts MM, Haylock DN, Dyson PG, Branford AL, Thorp D et al (1992) Comparison of haematological recovery times and supportive care requirements of autologous recovery phase peripheral blood stem cell transplants, autologous bone marrow transplants and allogeneic bone marrow transplants. Bone Marrow Transplant 9(4):277–284PubMedGoogle Scholar
  7. 7.
    Chen SH, Wang TF, Yang KL (2013) Hematopoietic stem cell donation. Int J Hematol 97(4):446–455PubMedCrossRefGoogle Scholar
  8. 8.
    Pusic I, DiPersio JF (2008) The use of growth factors in hematopoietic stem cell transplantation. Curr Pharm Des 14(20):1950–1961PubMedCrossRefGoogle Scholar
  9. 9.
    Wuchter P, Ran D, Bruckner T, Schmitt T, Witzens-Harig M, Neben K et al (2010) Poor mobilization of hematopoietic stem cells-definitions, incidence, risk factors, and impact on outcome of autologous transplantation. Biol Blood Marrow Transplant 16(4):490–499CrossRefGoogle Scholar
  10. 10.
    Mohty M, Ho AD (2011) In and out of the niche: perspectives in mobilization of hematopoietic stem cells. Exp Hematol 39(7):723–729PubMedCrossRefGoogle Scholar
  11. 11.
    Bensinger W, DiPersio JF, McCarty JM (2009) Improving stem cell mobilization strategies: future directions. Bone Marrow Transplant 43(3):181–195PubMedCrossRefGoogle Scholar
  12. 12.
    Gertz MA, Kumar SK, Lacy MQ, Dispenzieri A, Hayman SR, Buadi FK et al (2009) Comparison of high-dose CY and growth factor with growth factor alone for mobilization of stem cells for transplantation in patients with multiple myeloma. Bone Marrow Transplant 43(8):619–625PubMedCrossRefGoogle Scholar
  13. 13.
    Giralt S, Costa L, Schriber J, Dipersio J, Maziarz R, McCarty J et al (2014) Optimizing autologous stem cell mobilization strategies to improve patient outcomes: consensus guidelines and recommendations. Biol Blood Marrow Transplant 20(3):295–308PubMedCrossRefGoogle Scholar
  14. 14.
    Gertz MA (2010) Current status of stem cell mobilization. Br J Haematol 150(6):647–662PubMedCrossRefGoogle Scholar
  15. 15.
    Pusic I, Jiang SY, Landua S, Uy GL, Rettig MP, Cashen AF et al (2008) Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. Biol Blood Marrow Transplant 14(9):1045–1056PubMedCrossRefGoogle Scholar
  16. 16.
    Narayanasami U, Kanteti R, Morelli J, Klekar A, Al-Olama A, Keating C et al (2001) Randomized trial of filgrastim versus chemotherapy and filgrastim mobilization of hematopoietic progenitor cells for rescue in autologous transplantation. Blood 98(7):2059–2064PubMedCrossRefGoogle Scholar
  17. 17.
    Dazzi C, Cariello A, Rosti G, Argnani M, Sebastiani L, Ferrari E et al (2000) Is there any difference in PBPC mobilization between cyclophosphamide plus G-CSF and G-CSF alone in patients with non-Hodgkin’s Lymphoma? Leuk Lymphoma 39(3–4):301–310PubMedCrossRefGoogle Scholar
  18. 18.
    Desikan KR, Barlogie B, Jagannath S, Vesole DH, Siegel D, Fassas A et al (1998) Comparable engraftment kinetics following peripheral-blood stem-cell infusion mobilized with granulocyte colony-stimulating factor with or without cyclophosphamide in multiple myeloma. J Clin Oncol 16(4):1547–1553PubMedCrossRefGoogle Scholar
  19. 19.
    Alegre A, Tomas JF, Martinez-Chamorro C, Gil-Fernandez JJ, Fernandez-Villalta MJ, Arranz R et al (1997) Comparison of peripheral blood progenitor cell mobilization in patients with multiple myeloma: high-dose cyclophosphamide plus GM-CSF vs G-CSF alone. Bone Marrow Transplant 20(3):211–217PubMedCrossRefGoogle Scholar
  20. 20.
    Bensinger W, Appelbaum F, Rowley S, Storb R, Sanders J, Lilleby K et al (1995) Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J Clin Oncol 13(10):2547–2555PubMedCrossRefGoogle Scholar
  21. 21.
    Sung AD, Grima DT, Bernard LM, Brown S, Carrum G, Holmberg L et al (2013) Outcomes and costs of autologous stem cell mobilization with chemotherapy plus G-CSF vs G-CSF alone. Bone Marrow Transplant 48(11):1444–1449PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Mohammadi S, Malek Mohammadi A, Nikbakht M, Norooznezhad AH, Alimoghaddam K, Ghavamzadeh A (2017) Optimizing stem cells mobilization strategies to ameliorate patient outcomes: a review of guide- lines and recommendations. Int J Hematol Oncol Stem Cell Res 11(1):78–88PubMedPubMedCentralGoogle Scholar
  23. 23.
    Baertsch MA, Schlenzka J, Lisenko K, Krzykalla J, Becker N, Weisel K et al (2017) Cyclophosphamide-based stem cell mobilization in relapsed multiple myeloma patients: a subgroup analysis from the phase III trial ReLApsE. Eur J Haematol 99(1):42–50PubMedCrossRefGoogle Scholar
  24. 24.
    Lisenko K, McClanahan F, Schoning T, Schwarzbich MA, Cremer M, Dittrich T et al (2016) Minimal renal toxicity after Rituximab DHAP with a modified cisplatin application scheme in patients with relapsed or refractory diffuse large B-cell lymphoma. BMC Cancer 16(1):267PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kriegsmann K, Heilig C, Cremer M, Novotny P, Kriegsmann M, Bruckner T et al (2017) Successful collection of peripheral blood stem cells upon VIDE chemomobilization in sarcoma patients. Eur J Haematol 99(5):459–464PubMedCrossRefGoogle Scholar
  26. 26.
    Kriegsmann K, Schmitt A, Kriegsmann M, Bruckner T, Anyanwu A, Witzens-Harig M et al (2018) Orchestration of chemomobilization and G-CSF administration for successful hematopoietic stem cell collection. Biol Blood Marrow Transplant 24(6):1281–1288PubMedCrossRefGoogle Scholar
  27. 27.
    Mohty M, Hubel K, Kroger N, Aljurf M, Apperley J, Basak GW et al (2014) Autologous haematopoietic stem cell mobilisation in multiple myeloma and lymphoma patients: a position statement from the European Group for blood and marrow transplantation. Bone Marrow Transplant 49(7):865–872PubMedCrossRefGoogle Scholar
  28. 28.
    Marchesi F, Mengarelli A (2016) Biosimilar filgrastim in autologous peripheral blood hematopoietic stem cell mobilization and post-transplant hematologic recovery. Curr Med Chem 23(21):2217–2229PubMedCrossRefGoogle Scholar
  29. 29.
    Subramanyam M (2013) Clinical development of biosimilars: an evolving landscape. Bioanalysis 5(5):575–586PubMedCrossRefGoogle Scholar
  30. 30.
    Martino M, Recchia AG, Moscato T, Fedele R, Neri S, Gentile M et al (2015) Efficacy of biosimilar granulocyte colony-stimulating factor versus originator granulocyte colony-stimulating factor in peripheral blood stem cell mobilization in de novo multiple myeloma patients. Cytotherapy 17(10):1485–1493PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Marchesi F, Vacca M, Gumenyuk S, Pandolfi A, Renzi D, Palombi F, Pisani F, Romano A, Spadea A, Ipsevich F, Santinelli S, De Rienzo M, Papa E, Canfora M, Laurenzi L, Foddai ML, Pierelli L, Mengarelli A (2016) Biosimilar filgrastim (Zarzio®) vs. lenograstim (Myelostim®) for peripheral blood stem cell mobilization in adult patients with lymphoma and myeloma: a single center experience.Leuk Lymphoma 57(2):489-492Google Scholar
  32. 32.
    Remenyi P, Gopcsa L, Marton I, Reti M, Mikala G, Peto M et al (2014) Peripheral blood stem cell mobilization and engraftment after autologous stem cell transplantation with biosimilar rhG-CSF. Adv Ther 31(4):451–460PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Lefrere F, Brignier AC, Elie C, Ribeil JA, Bernimoulin M, Aoun C et al (2011) First experience of autologous peripheral blood stem cell mobilization with biosimilar granulocyte colony-stimulating factor. Adv Ther 28(4):304–310PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Maul JT, Stenner-Liewen F, Seifert B, Pfrommer S, Petrausch U, Kiessling MK et al (2017) Efficacious and save use of biosimilar filgrastim for hematopoietic progenitor cell chemo-mobilization with vinorelbine in multiple myeloma patients. J Clin Apher 32(1):21–26PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Ria R, Gasparre T, Mangialardi G, Bruno A, Iodice G, Vacca A et al (2010) Comparison between filgrastim and lenograstim plus chemotherapy for mobilization of PBPCs. Bone Marrow Transplant 45(2):277–281PubMedCrossRefPubMedCentralGoogle Scholar
  36. 36.
    Kim IH, Park SK, Suh OK, Oh JM (2003) Comparison of lenograstim and filgrastim on haematological effects after autologous peripheral blood stem cell transplantation with high-dose chemotherapy. Curr Med Res Opin 19(8):753–759PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Lefrere F, Bernard M, Audat F, Cavazzana-Calvo M, Belanger C, Hermine O et al (1999) Comparison of lenograstim vs filgrastim administration following chemotherapy for peripheral blood stem cell (PBSC) collection: a retrospective study of 126 patients. Leuk Lymphoma 35(5–6):501–505PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Duong HK, Savani BN, Copelan E, Devine S, Costa LJ, Wingard JR et al (2014) Peripheral blood progenitor cell mobilization for autologous and allogeneic hematopoietic cell transplantation: guidelines from the American Society for Blood and Marrow Transplantation. Biol Blood Marrow Transplant 20(9):1262–1273CrossRefGoogle Scholar
  39. 39.
    Costa LJ, Miller AN, Alexander ET, Hogan KR, Shabbir M, Schaub C et al (2011) Growth factor and patient-adapted use of plerixafor is superior to CY and growth factor for autologous hematopoietic stem cells mobilization. Bone Marrow Transplant 46(4):523–528PubMedCrossRefPubMedCentralGoogle Scholar
  40. 40.
    Tuchman SA, Bacon WA, Huang LW, Long G, Rizzieri D, Horwitz M et al (2015) Cyclophosphamide-based hematopoietic stem cell mobilization before autologous stem cell transplantation in newly diagnosed multiple myeloma. J Clin Apher 30(3):176–182PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Farina L, Guidetti A, Spina F, Roncari L, Longoni P, Ravagnani F et al (2014) Plerixafor “on demand”: results of a strategy based on peripheral blood CD34+ cells in lymphoma patients at first or subsequent mobilization with chemotherapy+G-CSF. Bone Marrow Transplant 49(3):453–455PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Shaughnessy P, Chao N, Shapiro J, Walters K, McCarty J, Abhyankar S et al (2013) Pharmacoeconomics of hematopoietic stem cell mobilization: an overview of current evidence and gaps in the literature. Biol Blood Marrow Transplant 19(9):1301–1309PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Kim JE, Yoo C, Kim S, Lee DH, Kim SW, Lee JS et al (2011) Optimal timing of G-CSF administration for effective autologous stem cell collection. Bone Marrow Transplant 46(6):806–812PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Strauss SJ, McTiernan A, Driver D, Hall-Craggs M, Sandison A, Cassoni AM et al (2003) Single center experience of a new intensive induction therapy for ewing’s family of tumors: feasibility, toxicity, and stem cell mobilization properties. J Clin Oncol 21(15):2974–2981PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Cheng J, Schmitt M, Wuchter P, Buss EC, Witzens-Harig M, Neben K et al (2015) Plerixafor is effective given either preemptively or as a rescue strategy in poor stem cell mobilizing patients with multiple myeloma. Transfusion 55(2):275–283PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30(9):973–981PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Mohle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L (1998) The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell-derived factor-1. Blood 91(12):4523–4530PubMedPubMedCentralGoogle Scholar
  48. 48.
    Fricker SP, Anastassov V, Cox J, Darkes MC, Grujic O, Idzan SR et al (2006) Characterization of the molecular pharmacology of AMD3100: a specific antagonist of the G-protein coupled chemokine receptor, CXCR4. Biochem Pharmacol 72(5):588–596PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Cashen AF, Nervi B, DiPersio J (2007) AMD3100: CXCR4 antagonist and rapid stem cell-mobilizing agent. Future Oncol 3(1):19–27PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA et al (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201(8):1307–1318PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Wuchter P, Saffrich R, Giselbrecht S, Nies C, Lorig H, Kolb S et al (2016) Microcavity arrays as an in vitro model system of the bone marrow niche for hematopoietic stem cells. Cell Tissue Res 364(3):573–584CrossRefGoogle Scholar
  52. 52.
    Wuchter P, Leinweber C, Saffrich R, Hanke M, Eckstein V, Ho AD et al (2014) Plerixafor induces the rapid and transient release of stromal cell-derived factor-1 alpha from human mesenchymal stromal cells and influences the migration behavior of human hematopoietic progenitor cells. Cell Tissue Res 355(2):315–326CrossRefGoogle Scholar
  53. 53.
    Ludwig A, Saffrich R, Eckstein V, Bruckner T, Wagner W, Ho AD et al (2014) Functional potentials of human hematopoietic progenitor cells are maintained by mesenchymal stromal cells and not impaired by plerixafor. Cytotherapy 16(1):111–121CrossRefGoogle Scholar
  54. 54.
    Sancho JM, Morgades M, Grifols JR, Junca J, Guardia R, Vives S et al (2012) Predictive factors for poor peripheral blood stem cell mobilization and peak CD34(+) cell count to guide pre-emptive or immediate rescue mobilization. Cytotherapy 14(7):823–829PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Han X, Ma L, Zhao L, He X, Liu P, Zhou S et al (2012) Predictive factors for inadequate stem cell mobilization in Chinese patients with NHL and HL: 14-year experience of a single-center study. J Clin Apher 27(2):64–74PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Olivieri A, Marchetti M, Lemoli R, Tarella C, Iacone A, Lanza F et al (2012) Proposed definition of ’poor mobilizer’ in lymphoma and multiple myeloma: an analytic hierarchy process by ad hoc working group Gruppo ItalianoTrapianto di Midollo Osseo. Bone Marrow Transplant 47(3):342–351PubMedCrossRefPubMedCentralGoogle Scholar
  57. 57.
    Sinha S, Gastineau D, Micallef I, Hogan W, Ansell S, Buadi F et al (2011) Predicting PBSC harvest failure using circulating CD34 levels: developing target-based cutoff points for early intervention. Bone Marrow Transplant 46(7):943–949PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Chen AI, Bains T, Murray S, Knight R, Shoop K, Bubalo J et al (2012) Clinical experience with a simple algorithm for plerixafor utilization in autologous stem cell mobilization. Bone Marrow Transplant 47(12):1526–1529PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Abhyankar S, DeJarnette S, Aljitawi O, Ganguly S, Merkel D, McGuirk J (2012) A risk-based approach to optimize autologous hematopoietic stem cell (HSC) collection with the use of plerixafor. Bone Marrow Transplant 47(4):483–487PubMedCrossRefPubMedCentralGoogle Scholar
  60. 60.
    Costa LJ, Alexander ET, Hogan KR, Schaub C, Fouts TV, Stuart RK (2011) Development and validation of a decision-making algorithm to guide the use of plerixafor for autologous hematopoietic stem cell mobilization. Bone Marrow Transplant 46(1):64–69PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Hundemer M, Engelhardt M, Bruckner T, Kraeker S, Schmitt A, Sauer S et al (2014) Rescue stem cell mobilization with plerixafor economizes leukapheresis in patients with multiple myeloma. J Clin Apher 29(6):299–304PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Baertsch MA, Kriegsmann K, Pavel P, Bruckner T, Hundemer M, Kriegsmann M et al (2018) Platelet count before peripheral blood stem cell mobilization is associated with the need for plerixafor but not with the collection result. Transfus Med Hemother 45(1):24–31PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Lisenko K, Pavel P, Kriegsmann M, Bruckner T, Hillengass J, Goldschmidt H et al (2017) Storage duration of autologous stem cell preparations has no impact on hematopoietic recovery after transplantation. Biol Blood Marrow Transplant 23(4):684–690PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Wuchter P, Hundemer M, Schmitt A, Witzens-Harig M, Pavel P, Hillengass J et al (2017) Performance assessment and benchmarking of autologous peripheral blood stem cell collection with two different apheresis devices. Transfus Med 27(1):36–42PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Lisenko K, Baertsch MA, Meiser R, Pavel P, Bruckner T, Kriegsmann M et al (2017) Comparison of biosimilar filgrastim, originator filgrastim, and lenograstim for autologous stem cell mobilization in patients with multiple myeloma. Transfusion 57(10):2359–2365PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Lisenko K, Pavel P, Bruckner T, Puthenparambil J, Hundemer M, Schmitt A et al (2017) Comparison between intermittent and continuous spectra optia leukapheresis systems for autologous peripheral blood stem cell collection. J Clin Apher 32(1):27–34PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Rosenbaum ER, O’Connell B, Cottler-Fox M (2012) Validation of a formula for predicting daily CD34(+) cell collection by leukapheresis. Cytotherapy 14(4):461–466PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Rosenbaum ER, Wuchter P, Hundemer M, Pavel P, Witzens-Harig M, Goldschmidt H et al (2014) Validation of a predictive formula for collection of hematopoietic progenitor cells (HPC) By leukapheresis at 2 institutions using 4 different machine protocols. Blood 124(21):2458Google Scholar
  69. 69.
    Brauninger S, Bialleck H, Thorausch K, Felt T, Seifried E, Bonig H (2012) Allogeneic donor peripheral blood "stem cell" apheresis: prospective comparison of two apheresis systems. Transfusion 52(5):1137–1145PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Flommersfeld S, Bakchoul T, Bein G, Wachtel A, Loechelt C, Sachs UJ (2013) A single center comparison between three different apheresis systems for autologous and allogeneic stem cell collections. Transfus Apher Sci 49(3):428–433PubMedCrossRefGoogle Scholar
  71. 71.
    Reinhardt P, Brauninger S, Bialleck H, Thorausch K, Smith R, Schrezenmeier H et al (2011) Automatic interface-controlled apheresis collection of stem/progenitor cells: results from an autologous donor validation trial of a novel stem cell apheresis device. Transfusion 51(6):1321–1330PubMedCrossRefGoogle Scholar
  72. 72.
    Cousins AF, Sinclair JE, Alcorn MJ (2015) R HAG, Douglas KW. HPC-A dose prediction on the optia(R) cell separator based on a benchmark CE2 collection efficiency: Promoting clinical efficiency, minimizing toxicity, and allowing quality control. J Clin Apher 30(6):321–328PubMedCrossRefGoogle Scholar
  73. 73.
    Passweg JR, Baldomero H, Bader P, Bonini C, Cesaro S, Dreger P et al (2015) Hematopoietic SCT in Europe 2013: recent trends in the use of alternative donors showing more haploidentical donors but fewer cord blood transplants. Bone Marrow Transplant 50(4):476–482PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Leemhuis T, Padley D, Keever-Taylor C, Niederwieser D, Teshima T, Lanza F et al (2014) Essential requirements for setting up a stem cell processing laboratory. Bone Marrow Transplant 49(8):1098–1105PubMedCrossRefGoogle Scholar
  75. 75.
    Berz D, McCormack EM, Winer ES, Colvin GA, Quesenberry PJ (2007) Cryopreservation of hematopoietic stem cells. Am J Hematol 82(6):463–472PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Veeraputhiran M, Theus JW, Pesek G, Barlogie B, Cottler-Fox M (2010) Viability and engraftment of hematopoietic progenitor cells after long-term cryopreservation: effect of diagnosis and percentage dimethyl sulfoxide concentration. Cytotherapy 12(6):764–766PubMedCrossRefGoogle Scholar
  77. 77.
    Detry G, Calvet L, Straetmans N, Cabrespine A, Ravoet C, Bay JO et al (2014) Impact of uncontrolled freezing and long-term storage of peripheral blood stem cells at - 80 degrees C on haematopoietic recovery after autologous transplantation. Report from two centres. Bone Marrow Transplant 49(6):780–785PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Watts MJ, Sullivan AM, Ings SJ, Barlow M, Devereux S, Goldstone AH et al (1998) Storage of PBSC at −80 °C. Bone Marrow Transplant 21(1):111–112PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    Katayama Y, Yano T, Bessho A, Deguchi S, Sunami K, Mahmut N et al (1997) The effects of a simplified method for cryopreservation and thawing procedures on peripheral blood stem cells. Bone Marrow Transplant 19(3):283–287PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Fernyhough LJ, Buchan VA, McArthur LT, Hock BD (2013) Relative recovery of haematopoietic stem cell products after cryogenic storage of up to 19 years. Bone Marrow Transplant 48(1):32–35PubMedCrossRefGoogle Scholar
  81. 81.
    McCullough J, Haley R, Clay M, Hubel A, Lindgren B, Moroff G (2010) Long-term storage of peripheral blood stem cells frozen and stored with a conventional liquid nitrogen technique compared with cells frozen and stored in a mechanical freezer. Transfusion 50(4):808–819PubMedCrossRefGoogle Scholar
  82. 82.
    Spurr EE, Wiggins NE, Marsden KA, Lowenthal RM, Ragg SJ (2002) Cryopreserved human haematopoietic stem cells retain engraftment potential after extended (5–14 years) cryostorage. Cryobiology 44(3):210–217PubMedCrossRefGoogle Scholar
  83. 83.
    Valeri CR, Pivacek LE (1996) Effects of the temperature, the duration of frozen storage, and the freezing container on in vitro measurements in human peripheral blood mononuclear cells. Transfusion 36(4):303–308PubMedCrossRefGoogle Scholar
  84. 84.
    Abbruzzese L, Agostini F, Durante C, Toffola RT, Rupolo M, Rossi FM et al (2013) Long term cryopreservation in 5% DMSO maintains unchanged CD34(+) cells viability and allows satisfactory hematological engraftment after peripheral blood stem cell transplantation. Vox Sang 105(1):77–80PubMedCrossRefGoogle Scholar
  85. 85.
    Liseth K, Ersvaer E, Abrahamsen JF, Nesthus I, Ryningen A, Bruserud O (2009) Long-term cryopreservation of autologous stem cell grafts: a clinical and experimental study of hematopoietic and immunocompetent cells. Transfusion 49(8):1709–1719PubMedCrossRefGoogle Scholar
  86. 86.
    Aird W, Labopin M, Gorin NC, Antin JH (1992) Long-term cryopreservation of human stem cells. Bone Marrow Transplant 9(6):487–490PubMedGoogle Scholar
  87. 87.
    Al-Anazi KA (2012) Autologous hematopoietic stem cell transplantation for multiple myeloma without cryopreservation. Bone Marrow Res 2012:917361PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Fruehauf S, Klaus J, Huesing J, Veldwijk MR, Buss EC, Topaly J et al (2007) Efficient mobilization of peripheral blood stem cells following CAD chemotherapy and a single dose of pegylated G-CSF in patients with multiple myeloma. Bone Marrow Transplant 39(12):743–750PubMedCrossRefGoogle Scholar
  89. 89.
    Breitkreutz I, Lokhorst HM, Raab MS, Holt B, Cremer FW, Herrmann D et al (2007) Thalidomide in newly diagnosed multiple myeloma: influence of thalidomide treatment on peripheral blood stem cell collection yield. Leukemia 21(6):1294–1299PubMedCrossRefGoogle Scholar
  90. 90.
    Lisenko K, Wuchter P, Hansberg M, Mangatter A, Benner A, Ho AD et al (2017) Comparison of different stem cell mobilization regimens in AL amyloidosis patients. Biol Blood Marrow Transplant 23(11):1870–1878PubMedCrossRefGoogle Scholar
  91. 91.
    Worel N, Schulenburg A, Mitterbauer M, Keil F, Rabitsch W, Kalhs P et al (2006) Autologous stem-cell transplantation in progressing amyloidosis is associated with severe transplant-related toxicity. Wien Klin Wochenschr 118(1–2):49–53PubMedCrossRefGoogle Scholar
  92. 92.
    Perotti C, Del Fante C, Viarengo G, Perlini S, Vezzoli M, Rodi G et al (2005) Peripheral blood progenitor cell mobilization and collection in 42 patients with primary systemic amyloidosis. Transfusion 45(11):1729–1734PubMedCrossRefGoogle Scholar
  93. 93.
    Gertz MA, Lacy MQ, Gastineau DA, Inwards DJ, Chen MG, Tefferi A et al (2000) Blood stem cell transplantation as therapy for primary systemic amyloidosis (AL). Bone Marrow Transplant 26(9):963–969PubMedCrossRefGoogle Scholar
  94. 94.
    Blank N, Lisenko K, Pavel P, Bruckner T, Ho AD, Wuchter P (2016) Low-dose cyclophosphamide effectively mobilizes peripheral blood stem cells in patients with autoimmune disease. Eur J Haematol 97(1):78–82PubMedCrossRefGoogle Scholar
  95. 95.
    Endo T, Sato N, Mogi Y, Koizumi K, Nishio M, Fujimoto K et al (2004) Peripheral blood stem cell mobilization following CHOP plus rituximab therapy combined with G-CSF in patients with B-cell non-Hodgkin’s lymphoma. Bone Marrow Transplant 33(7):703–707PubMedCrossRefGoogle Scholar
  96. 96.
    Shi Y, Zhou P, Han X, He X, Zhou S, Liu P et al (2015) Autologous peripheral blood stem cell mobilization following dose-adjusted cyclophosphamide, doxorubicin, vincristine, and prednisolone chemotherapy alone or in combination with rituximab in treating high-risk non-Hodgkin’s lymphoma. Chin J Cancer 34(11):522–530PubMedGoogle Scholar
  97. 97.
    Takeyama K, Ogura M, Morishima Y, Kasai M, Kiyama Y, Ohnishi K et al (2003) A dose-finding study of glycosylated G-CSF (Lenograstim) combined with CHOP therapy for stem cell mobilization in patients with non-Hodgkin’s lymphoma. Jpn J Clin Oncol 33(2):78–85PubMedCrossRefGoogle Scholar
  98. 98.
    Lisenko K, Cremer M, Schwarzbich MA, Kriegsmann M, Ho AD, Witzens-Harig M et al (2016) Efficient stem cell collection after modified cisplatin-based mobilization chemotherapy in patients with diffuse large B cell lymphoma. Biol Blood Marrow Transplant 22(8):1397–1402PubMedCrossRefGoogle Scholar
  99. 99.
    Gisselbrecht C, Glass B, Mounier N, Singh Gill D, Linch DC, Trneny M et al (2010) Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol 28(27):4184–4190PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Smardova L, Engert A, Haverkamp H, Raemakers J, Baars J, Pfistner B et al (2005) Successful mobilization of peripheral blood stem cells with the DHAP regimen (dexamethasone, cytarabine, cisplatinum) plus granulocyte colony-stimulating factor in patients with relapsed Hodgkin’s disease. Leuk Lymphoma 46(7):1017–1022PubMedCrossRefGoogle Scholar
  101. 101.
    Pavone V, Gaudio F, Guarini A, Perrone T, Zonno A, Curci P et al (2002) Mobilization of peripheral blood stem cells with high-dose cyclophosphamide or the DHAP regimen plus G-CSF in non-Hodgkin’s lymphoma. Bone Marrow Transplant 29(4):285–290PubMedCrossRefGoogle Scholar
  102. 102.
    Russell N, Mesters R, Schubert J, Boogaerts M, Johnsen HE, Canizo CD et al (2008) A phase 2 pilot study of pegfilgrastim and filgrastim for mobilizing peripheral blood progenitor cells in patients with non-Hodgkin’s lymphoma receiving chemotherapy. Haematologica 93(3):405–412PubMedCrossRefGoogle Scholar
  103. 103.
    Kewalramani T, Zelenetz AD, Nimer SD, Portlock C, Straus D, Noy A et al (2004) Rituximab and ICE as second-line therapy before autologous stem cell transplantation for relapsed or primary refractory diffuse large B-cell lymphoma. Blood 103(10):3684–3688PubMedCrossRefGoogle Scholar
  104. 104.
    Zelenetz AD, Hamlin P, Kewalramani T, Yahalom J, Nimer S, Moskowitz CH (2003) Ifosfamide, carboplatin, etoposide (ICE)-based second-line chemotherapy for the management of relapsed and refractory aggressive non-Hodgkin’s lymphoma. Ann Oncol 14(Suppl 1):i5–i10PubMedCrossRefGoogle Scholar
  105. 105.
    Kingreen D, Beyer J, Kleiner S, Reif S, Huhn D, Siegert W (2001) ICE--an efficient drug combination for stem cell mobilization and high-dose treatment of malignant lymphoma. Eur J Haematol Suppl 64:46–50PubMedGoogle Scholar
  106. 106.
    Illerhaus G, Marks R, Ihorst G, Guttenberger R, Ostertag C, Derigs G et al (2006) High-dose chemotherapy with autologous stem-cell transplantation and hyperfractionated radiotherapy as first-line treatment of primary CNS lymphoma. J Clin Oncol 24(24):3865–3870PubMedCrossRefGoogle Scholar
  107. 107.
    Necchi A, Nicolai N, Mariani L, Raggi D, Fare E, Giannatempo P et al (2013) Modified cisplatin, etoposide, and ifosfamide (PEI) salvage therapy for male germ cell tumors: long-term efficacy and safety outcomes. Ann Oncol 24(11):2887–2892PubMedCrossRefGoogle Scholar
  108. 108.
    Harstrick A, Schmoll HJ, Wilke H, Kohne-Wompner CH, Stahl M, Schober C et al (1991) Cisplatin, etoposide, and ifosfamide salvage therapy for refractory or relapsing germ cell carcinoma. J Clin Oncol 9(9):1549–1555PubMedCrossRefGoogle Scholar
  109. 109.
    Voss MH, Feldman DR, Motzer RJ (2011) High-dose chemotherapy and stem cell transplantation for advanced testicular cancer. Expert Rev Anticancer Ther 11(7):1091–1103PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Hildebrandt M, Rick O, Salama A, Siegert W, Huhn D, Beyer J (2000) Detection of germ-cell tumor cells in peripheral blood progenitor cell harvests: impact on clinical outcome. Clin Cancer Res 6(12):4641–4646PubMedGoogle Scholar
  111. 111.
    Schwella N, Beyer J, Schwaner I, Heuft HG, Rick O, Huhn D et al (1996) Impact of preleukapheresis cell counts on collection results and correlation of progenitor-cell dose with engraftment after high-dose chemotherapy in patients with germ cell cancer. J Clin Oncol 14(4):1114–1121PubMedCrossRefGoogle Scholar
  112. 112.
    Siegert W, Beyer J, Strohscheer I, Baurmann H, Oettle H, Zingsem J et al (1994) High-dose treatment with carboplatin, etoposide, and ifosfamide followed by autologous stem-cell transplantation in relapsed or refractory germ cell cancer: a phase I/II study. The German Testicular Cancer Cooperative Study Group. J Clin Oncol 12(6):1223–1231PubMedCrossRefGoogle Scholar
  113. 113.
    Waterman J, Rybicki L, Bolwell B, Copelan E, Pohlman B, Sweetenham J et al (2012) Fludarabine as a risk factor for poor stem cell harvest, treatment-related MDS and AML in follicular lymphoma patients after autologous hematopoietic cell transplantation. Bone Marrow Transplant 47(4):488–493PubMedCrossRefGoogle Scholar
  114. 114.
    Perseghin P, Terruzzi E, Dassi M, Baldini V, Parma M, Coluccia P et al (2009) Management of poor peripheral blood stem cell mobilization: incidence, predictive factors, alternative strategies and outcome. A retrospective analysis on 2177 patients from three major Italian institutions. Transfus Apher Sci 41(1):33–37PubMedCrossRefGoogle Scholar
  115. 115.
    Mendrone A Jr, Arrais CA, Saboya R, Chamone Dde A, Dulley FL (2008) Factors affecting hematopoietic progenitor cell mobilization: an analysis of 307 patients. Transfus Apher Sci 39(3):187–192PubMedCrossRefGoogle Scholar
  116. 116.
    Janikova A, Koristek Z, Vinklarkova J, Pavlik T, Sticha M, Navratil M et al (2009) Efficacious but insidious: a retrospective analysis of fludarabine-induced myelotoxicity using long-term culture-initiating cells in 100 follicular lymphoma patients. Exp Hematol 37(11):1266–1273PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Popat U, Saliba R, Thandi R, Hosing C, Qazilbash M, Anderlini P et al (2009) Impairment of filgrastim-induced stem cell mobilization after prior lenalidomide in patients with multiple myeloma. Biol Blood Marrow Transplant 15(6):718–723PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Mazumder A, Kaufman J, Niesvizky R, Lonial S, Vesole D, Jagannath S (2008) Effect of lenalidomide therapy on mobilization of peripheral blood stem cells in previously untreated multiple myeloma patients. Leukemia 22(6):1280–1281. author reply 1-2PubMedCrossRefGoogle Scholar
  119. 119.
    Kumar S, Dispenzieri A, Lacy MQ, Hayman SR, Buadi FK, Gastineau DA et al (2007) Impact of lenalidomide therapy on stem cell mobilization and engraftment post-peripheral blood stem cell transplantation in patients with newly diagnosed myeloma. Leukemia 21(9):2035–2042PubMedCrossRefGoogle Scholar
  120. 120.
    Nakasone H, Kanda Y, Ueda T, Matsumoto K, Shimizu N, Minami J et al (2009) Retrospective comparison of mobilization methods for autologous stem cell transplantation in multiple myeloma. Am J Hematol 84(12):809–814PubMedCrossRefGoogle Scholar
  121. 121.
    Lanza F, Lemoli RM, Olivieri A, Laszlo D, Martino M, Specchia G et al (2014) Factors affecting successful mobilization with plerixafor: an Italian prospective survey in 215 patients with multiple myeloma and lymphoma. Transfusion 54(2):331–339PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medicine V (Hematology, Oncology, Rheumatology)Heidelberg UniversityHeidelbergGermany
  2. 2.Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg UniversityMannheimGermany
  3. 3.German Red Cross Blood Service Baden-Württemberg — HessenMannheimGermany

Personalised recommendations