Advertisement

Zebrafish Xenografts for the In Vivo Analysis of Healthy and Malignant Human Hematopoietic Cells

  • Martina Konantz
  • Joëlle S. Müller
  • Claudia LengerkeEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2017)

Abstract

The zebrafish is a powerful vertebrate model for genetic studies on embryonic development and organogenesis. In the last decades, zebrafish were furthermore increasingly used for disease modeling and investigation of cancer biology. Zebrafish are particularly used for mutagenesis and small molecule screens, as well as for live imaging assays that provide unique opportunities to monitor cell behavior, both on a single cell and whole organism level in real time. Zebrafish have been also used for in vivo investigations of human cells transplanted into embryos or adult animals; this zebrafish xenograft model can be considered as an intermediate assay between in vitro techniques and more time-consuming and expensive mammalian models.

Here, we present a protocol for transplantation of healthy and malignant human hematopoietic cells into larval zebrafish; transplantation into adult zebrafish and possible advantages and limitations of the zebrafish compared to murine xenograft models are discussed.

Key words

Zebrafish Xenograft Yolk sac Duct of Cuvier HSC 

Notes

Acknowledgments

We thank Prof. Dr. Sven Perner for the help with histopathological analyses of tumorlike structures. This work was funded by grants from the Swiss National Science Foundation (164200 and 149735).

References

  1. 1.
    Mullins MC, Nüsslein-Volhard C (1993) Mutational approaches to studying embryonic pattern formation in the zebrafish. Curr Opin Genet Dev 3:648–654CrossRefGoogle Scholar
  2. 2.
    Granato M, Nüsslein-Volhard C (1996) Fishing for genes controlling development. Curr Opin Genet Dev 6:461–468CrossRefGoogle Scholar
  3. 3.
    Kari G, Rodeck U, Dicker AP (2007) Zebrafish: an emerging model system for human disease and drug discovery. Clin Pharmacol Ther 82:70–80CrossRefGoogle Scholar
  4. 4.
    Feitsma H, Cuppen E (2008) Zebrafish as a cancer model. Mol Cancer Res 6:685–694CrossRefGoogle Scholar
  5. 5.
    Amatruda JF, Patton EE (2008) Genetic models of cancer in zebrafish. Int Rev Cell Mol Biol 271:1–34CrossRefGoogle Scholar
  6. 6.
    den Hertog J (2005) Chemical genetics: drug screens in zebrafish. Biosci Rep 25:289–297CrossRefGoogle Scholar
  7. 7.
    Lam SH, Chua HL, Gong Z, Lam TJ, Sin YM (2004) Development and maturation of the immune system in zebrafish, Danio rerio: a gene expression profiling, in situ hybridization and immunological study. Dev Comp Immunol 28:9–28CrossRefGoogle Scholar
  8. 8.
    Krauss J, Astrinides P, Frohnhöfer HG, Walderich B, Nüsslein-Volhard C (2013) transparent, a gene affecting stripe formation in Zebrafish, encodes the mitochondrial protein Mpv17 that is required for iridophore survival. Biol Open 2:703–710CrossRefGoogle Scholar
  9. 9.
    White RM, Sessa A, Burke C, Bowman T, LeBlanc J, Ceol C, Bourque C, Dovey M, Goessling W, Burns CE, Zon LI (2008) Transparent adult zebrafish as a tool for in vivo transplantation analysis. Cell Stem Cell 2:183–189CrossRefGoogle Scholar
  10. 10.
    Theocharides AP, Rongvaux A, Fritsch K, Flavell RA, Manz MG (2016) Humanized hemato-lymphoid system mice. Haematologica 101:5–19CrossRefGoogle Scholar
  11. 11.
    Paczulla AM, Dirnhofer S, Konantz M, Medinger M, Salih HR, Rothfelder K, Tsakiris DA, Passweg JR, Lundberg P, Lengerke C (2017) Long-term observation reveals high-frequency engraftment of human acute myeloid leukemia in immunodeficient mice. Haematologica 102:854–864CrossRefGoogle Scholar
  12. 12.
    Konantz M, Balci TB, Hartwig UF, Dellaire G, André MC, Berman JN, Lengerke C (2012) Zebrafish xenografts as a tool for in vivo studies on human cancer. Ann N Y Acad Sci 1266:124–137CrossRefGoogle Scholar
  13. 13.
    Haldi M, Ton C, Seng WL, McGrath P (2006) Human melanoma cells transplanted into zebrafish proliferate, migrate, produce melanin, form masses and stimulate angiogenesis in zebrafish. Angiogenesis 9:139–151CrossRefGoogle Scholar
  14. 14.
    Corkery DP, Dellaire G, Berman JN (2011) Leukaemia xenotransplantation in zebrafish—chemotherapy response assay in vivo. Br J Haematol 153:786–789CrossRefGoogle Scholar
  15. 15.
    Pruvot B, Jacquel A, Droin N, Auberger P, Bouscary D, Tamburini J, Muller M, Fontenay M, Chluba J, Solary E (2011) Leukemic cell xenograft in zebrafish embryo for investigating drug efficacy. Haematologica 96:612–616CrossRefGoogle Scholar
  16. 16.
    von Mässenhausen A, Sanders C, Brägelmann J, Konantz M, Queisser A, Vogel W, Kristiansen G, Duensing S, Schröck A, Bootz F, Brossart P, Kirfel J, Lengerke C, Perner S (2016) Targeting DDR2 in head and neck squamous cell carcinoma with dasatinib. Int J Cancer 139:2359–2369CrossRefGoogle Scholar
  17. 17.
    Queisser A, Hagedorn S, Wang H, Schaefer T, Konantz M, Alavi S, Deng M, Vogel W, von Mässenhausen A, Kristiansen G, Duensing S, Kirfel J, Lengerke C, Perner S (2017) Ecotropic viral integration site 1, a novel oncogene in prostate cancer. Oncogene 36:1573–1584CrossRefGoogle Scholar
  18. 18.
    Schaefer T, Wang H, Mir P, Konantz M, Pereboom TC, Paczulla AM, Merz B, Fehm T, Perner S, Rothfuss OC, Kanz L, Schulze-Osthoff K, Lengerke C (2015) Molecular and functional interactions between AKT and SOX2 in breast carcinoma. Oncotarget 6:43540–43556CrossRefGoogle Scholar
  19. 19.
    Wang H, Schaefer T, Konantz M, Braun M, Varga Z, Paczulla AM, Reich S, Jacob F, Perner S, Moch H, Fehm TN, Kanz L, Schulze-Osthoff K, Lengerke C (2017) Prominent oncogenic roles of EVI1 in breast carcinoma. Cancer Res 77:2148–2160CrossRefGoogle Scholar
  20. 20.
    He S, Lamers GE, Beenakker JW, Cui C, Ghotra VP, Danen EH, Meijer AH, Spaink HP, Snaar-Jagalska BE (2012) Neutrophil-mediated experimental metastasis is enhanced by VEGFR inhibition in a zebrafish xenograft model. J Pathol 227:431–445CrossRefGoogle Scholar
  21. 21.
    Nicoli S, Presta M (2007) The zebrafish/tumor xenograft angiogenesis assay. Nat Protoc 2:2918–2923CrossRefGoogle Scholar
  22. 22.
    Lee SL, Rouhi P, Dahl Jensen L, Zhang D, Ji H, Hauptmann G, Ingham P, Cao Y (2009) Hypoxia-induced pathological angiogenesis mediates tumor cell dissemination, invasion, and metastasis in a zebrafish tumor model. Proc Natl Acad Sci U S A 106:19485–19490CrossRefGoogle Scholar
  23. 23.
    Zhao C, Wang X, Zhao Y, Li Z, Lin S, Wei Y, Yang Y (2011) A novel xenograft model in zebrafish for high-resolution investigating dynamics of neovascularization in tumors. PLoS One 6:e21768CrossRefGoogle Scholar
  24. 24.
    Stoletov K, Kato H, Zardouzian E, Kelber J, Yang J, Shattil S, Klemke R (2010) Visualizing extravasation dynamics of metastatic tumor cells. J Cell Sci 123:2332–2341CrossRefGoogle Scholar
  25. 25.
    Jacob F, Alam S, Konantz M, Liang CY, Kohler RS, Everest-Dass AV, Huang YL, Rimmer N, Fedier A, Schötzau A, Núñez López M, Packer N, Lengerke C, Heinzelmann-Schwarz V (2018) Transition of mesenchymal and epithelial cancer cells depends on α1-4 galactosyltransferase-mediated glycosphingolipids. Cancer Res 78(11):2952–2965CrossRefGoogle Scholar
  26. 26.
    Tobia C, Gariano G, De Sena G, Presta M (2013) Zebrafish embryo as a tool to study tumor/endothelial cell cross-talk. Biochim Biophys Acta 1832:1371–1377CrossRefGoogle Scholar
  27. 27.
    Bentley VL, Veinotte CJ, Corkery DP, Pinder JB, LeBlanc MA, Bedard K, Weng AP, Berman JN, Dellaire G (2015) Focused chemical genomics using zebrafish xenotransplantation as a pre-clinical therapeutic platform for T-cell acute lymphoblastic leukemia. Haematologica 100:70–76CrossRefGoogle Scholar
  28. 28.
    Liu Y, Asnani A, Zou L, Bentley VL, Yu M, Wang Y, Dellaire G, Sarkar KS, Dai M, Chen HH, Sosnovik DE, Shin JT, Haber DA, Berman JN, Chao W, Peterson RT (2014) Visnagin protects against doxorubicin-induced cardiomyopathy through modulation of mitochondrial malate dehydrogenase. Sci Transl Med 6:266ra170CrossRefGoogle Scholar
  29. 29.
    Zhang B, Shimada Y, Hirota T, Ariyoshi M, Kuroyanagi J, Nishimura Y, Tanaka T (2016) Novel immunologic tolerance of human cancer cell xenotransplants in zebrafish. Transl Res 170:89–98.e83CrossRefGoogle Scholar
  30. 30.
    Mizgirev IV, Revskoy S (2010) A new zebrafish model for experimental leukemia therapy. Cancer Biol Ther 9:895–902CrossRefGoogle Scholar
  31. 31.
    Staal FJ, Spaink HP, Fibbe WE (2016) Visualizing human hematopoietic stem cell trafficking in vivo using a zebrafish xenograft model. Stem Cells Dev 25:360–365CrossRefGoogle Scholar
  32. 32.
    Hess I, Iwanami N, Schorpp M, Boehm T (2013) Zebrafish model for allogeneic hematopoietic cell transplantation not requiring preconditioning. Proc Natl Acad Sci U S A 110:4327–4332CrossRefGoogle Scholar
  33. 33.
    Shayegi N, Alakel N, Middeke JM, Schetelig J, Mantovani-Löffler L, Bornhäuser M (2015) Allogeneic stem cell transplantation for the treatment of refractory scleromyxedema. Transl Res 165:321–324CrossRefGoogle Scholar
  34. 34.
    Moore JC, Tang Q, Yordán NT, Moore FE, Garcia EG, Lobbardi R, Ramakrishnan A, Marvin DL, Anselmo A, Sadreyev RI, Langenau DM (2016) Single-cell imaging of normal and malignant cell engraftment into optically clear prkdc-null SCID zebrafish. J Exp Med 213:2575–2589CrossRefGoogle Scholar
  35. 35.
    Iwanami N, Hess I, Schorpp M, Boehm T (2017) Studying the adaptive immune system in zebrafish by transplantation of hematopoietic precursor cells. Methods Cell Biol 138:151–161CrossRefGoogle Scholar
  36. 36.
    de Jong JL, Burns CE, Chen AT, Pugach E, Mayhall EA, Smith AC, Feldman HA, Zhou Y, Zon LI (2011) Characterization of immune-matched hematopoietic transplantation in zebrafish. Blood 117:4234–4242CrossRefGoogle Scholar
  37. 37.
    Langenau DM, Ferrando AA, Traver D, Kutok JL, Hezel JP, Kanki JP, Zon LI, Look AT, Trede NS (2004) In vivo tracking of T cell development, ablation, and engraftment in transgenic zebrafish. Proc Natl Acad Sci U S A 101:7369–7374CrossRefGoogle Scholar
  38. 38.
    Tenente IM, Tang Q, Moore JC, Langenau DM (2014) Normal and malignant muscle cell transplantation into immune compromised adult zebrafish. J Vis Exp.  https://doi.org/10.3791/52597
  39. 39.
    Tang Q, Moore JC, Ignatius MS, Tenente IM, Hayes MN, Garcia EG, Torres Yordán N, Bourque C, He S, Blackburn JS, Look AT, Houvras Y, Langenau DM (2016) Imaging tumour cell heterogeneity following cell transplantation into optically clear immune-deficient zebrafish. Nat Commun 7:10358CrossRefGoogle Scholar
  40. 40.
    Stachura DL, Svoboda O, Campbell CA, Espín-Palazón R, Lau RP, Zon LI, Bartunek P, Traver D (2013) The zebrafish granulocyte colony-stimulating factors (Gcsfs): 2 paralogous cytokines and their roles in hematopoietic development and maintenance. Blood 122:3918–3928CrossRefGoogle Scholar
  41. 41.
    Svoboda O, Stachura DL, Machoňová O, Pajer P, Brynda J, Zon LI, Traver D, Bartůněk P (2014) Dissection of vertebrate hematopoiesis using zebrafish thrombopoietin. Blood 124:220–228CrossRefGoogle Scholar
  42. 42.
    Svoboda O, Stachura DL, Machoňová O, Zon LI, Traver D, Bartůněk P (2016) Ex vivo tools for the clonal analysis of zebrafish hematopoiesis. Nat Protoc 11:1007–1020CrossRefGoogle Scholar
  43. 43.
    Santos MD, Yasuike M, Hirono I, Aoki T (2006) The granulocyte colony-stimulating factors (CSF3s) of fish and chicken. Immunogenetics 58:422–432CrossRefGoogle Scholar
  44. 44.
    Wehmas LC, Tanguay RL, Punnoose A, Greenwood JA (2016) Developing a novel embryo-larval zebrafish xenograft assay to prioritize human glioblastoma therapeutics. Zebrafish 13:317–329CrossRefGoogle Scholar
  45. 45.
    Harfouche R, Basu S, Soni S, Hentschel DM, Mashelkar RA, Sengupta S (2009) Nanoparticle-mediated targeting of phosphatidylinositol-3-kinase signaling inhibits angiogenesis. Angiogenesis 12:325–338CrossRefGoogle Scholar
  46. 46.
    Cheng J, Gu YJ, Wang Y, Cheng SH, Wong WT (2011) Nanotherapeutics in angiogenesis: synthesis and in vivo assessment of drug efficacy and biocompatibility in zebrafish embryos. Int J Nanomedicine 6:2007–2021CrossRefGoogle Scholar
  47. 47.
    Ellett F, Pase L, Hayman JW, Andrianopoulos A, Lieschke GJ (2011) mpeg1 promoter transgenes direct macrophage-lineage expression in zebrafish. Blood 117:e49–e56CrossRefGoogle Scholar
  48. 48.
    Choi J, Dong L, Ahn J, Dao D, Hammerschmidt M, Chen JN (2007) FoxH1 negatively modulates flk1 gene expression and vascular formation in zebrafish. Dev Biol 304:735–744CrossRefGoogle Scholar
  49. 49.
    Progatzky F, Dallman MJ, Lo Celso C (2013) From seeing to believing: labelling strategies for in vivo cell-tracking experiments. Interface Focus 3:20130001CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Martina Konantz
    • 1
  • Joëlle S. Müller
    • 1
  • Claudia Lengerke
    • 1
    Email author
  1. 1.Department of BiomedicineUniversity of Basel and University Hospital BaselBaselSwitzerland

Personalised recommendations