Evolution of Peripheral Blood Stem Cell Transplantation

  • Anthony D. HoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2017)


Blood-derived progenitors have become the predominant source of hematopoietic stem cells for clinical transplantation. The main advantages compared to the bone marrow are as follows: harvesting blood stem cells is less painful for the donor, utilizes much less resources such as operating theater time and general anesthesia, and, above all, is associated with significantly accelerated reconstitution. The latter has ultimately improved patient safety as a consequence of significantly shortened aplastic phase and hence reduced morbidity and mortality after transplantation. Basic and translational research efforts in the 1960s to the mid-1980s have made the first blood stem cell transplantation in Heidelberg in 1985 possible. Diverse groups around the world have contributed to incremental knowledge that culminated in the first successful attempts in blood stem cell transplantation. These efforts have spawned modern research into stem cell biology and the immune modulatory effects of allogeneic transplantations.

Key words

HSC mobilization HSC transplantation Engraftment 


  1. 1.
    Maximow A (1909) Der Lymphozyt als gemeinsame Stammzelle der verschiedenen Blutelemente in der embryonalen Entwicklung und im postfetalen Leber der Säugetiere. Folia Haematol (Leipzig) 8:125–141Google Scholar
  2. 2.
    Siminovitch L, McCulloch EA, Till JE (1963) The distribution of colony-forming cells among spleen colonies. J Cell Comp Physiol 62:327–336CrossRefGoogle Scholar
  3. 3.
    Becker A, McCulloch EA, Till JE (1963) Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 197:452–454CrossRefGoogle Scholar
  4. 4.
    Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147CrossRefGoogle Scholar
  5. 5.
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872CrossRefGoogle Scholar
  6. 6.
    Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920CrossRefGoogle Scholar
  7. 7.
    Bach FH, Albertini RJ, Joo P, Anderson JL, Bortin MM (1968) Bone-marrow transplantation in a patient with the Wiskott-Aldrich syndrome. Lancet 2:1364–1366CrossRefGoogle Scholar
  8. 8.
    Gatti RA, Meuwissen HJ, Allen HD, Hong R, Good RA (1968) Immunological reconstitution of sex-linked lymphopenic immunological deficiency. Lancet 2:1366–1369CrossRefGoogle Scholar
  9. 9.
    de Koning J, van Bekkum DW, Dicke KA, Dooren LJ, Radl J, van Rood JJ (1969) Transplantation of bone-marrow cells and fetal thymus in an infant with lymphopenic immunological deficiency. Lancet 1:1223–1227CrossRefGoogle Scholar
  10. 10.
    Thomas ED, Bryant JI, Buckner CD, Clift RA, Fefer A, Fialkow PJ, Funk DD, Neiman PE, Rudolph RH, Slichter SJ, Storb R (1971) Allogeneic marrow grafting using HL-A matched donor-recipient sibling pairs. Trans Assoc Am Phys 84:248–261PubMedGoogle Scholar
  11. 11.
    Thomas ED, Flournoy N, Buckner CD, Clift RA, Fefer A, Neimen PE, Storb R (1977) Cure of leukaemia by marrow transplantation. Leukemia Res 1:67–70CrossRefGoogle Scholar
  12. 12.
    Körbling M, Dörken B, Ho AD, Pezzutto A, Hunstein W, Fliedner TM (1986) Autologous transplantation of blood-derived hemopoietic stem cells after myeloablative therapy in a patient with Burkitt’s lymphoma. Blood 67:529–532PubMedGoogle Scholar
  13. 13.
    Reiffers J, Bernard P, David B, Vezon G, Sarrat A, Marit G, Moulinier J, Broustet A (1986) Successful autologous transplantation with peripheral blood hemopoietic cells in a patient with acute leukemia. Exp Hematol 14:312–315Google Scholar
  14. 14.
    To LB, Dyson PG, Branford AL, Russell JA, Haylock DN, Ho JQ, Kimber RJ, Juttner CA (1987) Peripheral blood stem cells collected in very early remission produce rapid and sustained autologous haemopoietic reconstitution in acute non-lymphoblastic leukaemia. Bone Marrow Transplant 2:103–108PubMedGoogle Scholar
  15. 15.
    Bell AJ, Figes A, Oscier DG, Hamblin TJ (1987) Peripheral blood stem cell autografts in the treatment of lymphoid malignancies: initial experience in three patients. Br J Haematol 66:63–68CrossRefGoogle Scholar
  16. 16.
    Kessinger A, Armitage JO, Landmark JD, Smith DM, Weisenburger DD (1988) Autologous peripheral hematopoietic stem cell transplantation restores hematopoietic function following marrow ablative therapy. Blood 71:723–727Google Scholar
  17. 17.
    Goodman JW, Hodgson GS (1962) Evidence for stem cells in the peripheral blood of mice. Blood 19:702–714PubMedGoogle Scholar
  18. 18.
    Fliedner TM (1995) Blood stem cell transplantation: from preclinical to clinical models. Stem Cells 13(Suppl 3):1–12CrossRefGoogle Scholar
  19. 19.
    Körbling M, Fliedner TM, Calvo W, Nothdurft W, Ross WM (1977) In vitro and in vivo properties of canine blood mononuclear leukocytes separated by discontinuous density gradient centrifugation. Biomedicine 26:275–283PubMedGoogle Scholar
  20. 20.
    Körbling M, Ross W, Pflieger H, Arnold R, Fliedner TM (1977) Procurement of human blood stem cells by continuous flow centrifugation. Blood 50:747–754Google Scholar
  21. 21.
    Korbling M, Fliedner TM, Pflieger H (1980) Collection of large quantities of granulocyte/macrophage progenitor cells (CFUc) in man by continuous flow leukapheresis. Scand J Haematol 24:22–28CrossRefGoogle Scholar
  22. 22.
    Juttner CA, To LB, Haylock DN, Branford A, Kimber RJ (1985) Circulating autologous stem cells collected in very early remission from acute non-lymphoblastic leukemia produce prompt but incomplete haemopoietic reconstitution after high dose melphalan or supralethal chemoradiotherapy. Br J Haematol 61:739–745CrossRefGoogle Scholar
  23. 23.
    Beyer J, Schwella N, Zingsem J, Strohscheer I, Schwaner I, Oettle H, Serke S, Huhn D, Stieger W (1995) Hematopoietic rescue after high-dose chemotherapy using autologous peripheral-blood progenitor cells or bone marrow: a randomized comparison. J Clin Oncol 13:1328–1335CrossRefGoogle Scholar
  24. 24.
    Schmitz N, Linch DC, Dreger P, Goldstone AH, Boogaerts MA, Ferrant A, Demuynck HM, Link H, Zander A, Barge A (1996) Randomised trial of filgrastim-mobilised peripheral blood progenitor cell transplantation versus autologous bone-marrow transplantation in lymphoma patients. Lancet 347:353–357CrossRefGoogle Scholar
  25. 25.
    Hartmann O, Le Corroller AG, Blaise D, Michon J, Philip I, Norol F, Janvier M, Pico JL, Baranzelli MC, Rubie H, Coze C, Pinna A, Méresse V, Benhamou E (1997) Peripheral blood stem cells and bone marrow transplantation for solid tumors and lymphomas: hematologic recovery and costs. A randomized, controlled trial. Ann Intern Med 126:600–607CrossRefGoogle Scholar
  26. 26.
    Fruehauf S, Haas R, Conradt C, Murea S, Witt B, Möhle R, Hunstein W (1995) Peripheral blood progenitor cells (PBPC) counts during steady-state hemopoiesis allow to estimate the yield of mobilized PBPC after filgrastim (R-metHuG-CSF)-supported cytotoxic chemotherapy. Blood 85:2619–2626PubMedGoogle Scholar
  27. 27.
    Weaver CH, Hazelton B, Birch R, Palmer P, Allen C, Schwartzberg L, West W (1995) An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 86:3961–3969PubMedGoogle Scholar
  28. 28.
    Bensinger W, Appelbaum F, Rowley S, Storb R, Sanders J, Lilleby K, Gooley T, Demirer T, Schiffman K, Weaver C (1995) Factors that influence collection and engraftment of autologous peripheral-blood stem cells. J Clin Oncol 13:2547–2555CrossRefGoogle Scholar
  29. 29.
    To LB, Haylock DN, Simmons PJ, Juttner CA (1997) The biology and clinical uses of blood stem cells. Blood 89:2233–2258Google Scholar
  30. 30.
    Möhle R, Bautz F, Rafii S, Moore MA, Brugger W, Kanz L (1998) The chemokine receptor CXCR-4 is expressed on CD34+ hematopoietic progenitors and leukemic cells and mediates transendothelial migration induced by stromal cell derived factor-1. Blood 91:4523–4530Google Scholar
  31. 31.
    Lapidot T, Petit I (2002) Current understanding of stem cell mobilization: the roles of chemokines, proteolytic enzymes, adhesion molecules, cytokines, and stromal cells. Exp Hematol 30:973–981CrossRefGoogle Scholar
  32. 32.
    Petit I, Szyper-Kravitz M, Nagler A, Lahav M, Peled A, Habler L, Ponomaryov T, Taichman RS, Arenzana-Seisdedos F, Fujii N, Sandbank J, Zipori D, Lapidot T (2002) G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 3:687–694CrossRefGoogle Scholar
  33. 33.
    Broxmeyer HE, Orschell CM, Clapp DW, Hangoc G, Cooper S, Plett PA, Liles WC, Li X, Graham-Evans B, Campbell TB, Calandra G, Bridger G, Dale DC, Srour EF (2005) Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 201:1307–1318CrossRefGoogle Scholar
  34. 34.
    Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH (1984) Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 133:157–165PubMedGoogle Scholar
  35. 35.
    Gianni AM, Siena S, Bregni M, Tarella C, Stern AC, Pileri A, Bonadonna G (1989) Granulocyte-macrophage colony-stimulating factor to harvest circulating haemopoietic stem cells for autotransplantation. Lancet 2:580–585CrossRefGoogle Scholar
  36. 36.
    Haas R, Ho AD, Bredthauer U, Cayeux S, Egerer G, Knauf W, Hunstein W (1990) Successful autologous transplantation of blood stem cells mobilized with recombinant human granulocyte-macrophage colony-stimulating factor. Exp Hematol 18:94–98PubMedGoogle Scholar
  37. 37.
    Elias AD, Ayash L, Anderson KC, Hunt M, Wheeler C, Schwartz G, Tepler I, Mazanet R, Lynch C, Pap S (1992) Mobilization of peripheral blood progenitor cells by chemotherapy and granulocyte-macrophage colony-stimulating factor for hematologic support after high-dose intensification for breast cancer. Blood 79:3036–3044PubMedGoogle Scholar
  38. 38.
    Bensinger W, Singer J, Appelbaum F, Lilleby K, Longin K, Rowley S, Clarke E, Clift R, Hansen J, Shields T (1993) Autologous transplantation with peripheral blood mononuclear cells collected after administration of recombinant granulocyte stimulating factor. Blood 81:3158–3163PubMedGoogle Scholar
  39. 39.
    Gordan LN, Sugrue MW, Lynch JW, Williams KD, Khan SA, Wingard JR, Moreb JS (2003) Poor mobilization of peripheral blood stem cells is a risk factor for worse outcome in lymphoma patients undergoing autologous stem cell transplantation. Leuk Lymphoma 44:815–820CrossRefGoogle Scholar
  40. 40.
    Kuittinen T, Nousiainen T, Halonen P, Mahlamaki E, Jantunen E (2004) Prediction of mobilisation failure in patients with non-Hodgkin’s lymphoma. Bone Marrow Transplant 33:907–912CrossRefGoogle Scholar
  41. 41.
    Pavone V, Gaudio F, Console G et al (2006) Poor mobilization is an independent prognostic factor in patients with malignant lymphomas treated by peripheral blood stem cell transplantation. Bone Marrow Transplant 37:719–724CrossRefGoogle Scholar
  42. 42.
    Fruehauf S, Haas R, Conradt C, Murea S, Witt B, Möhle R, Hunstein W (1995) Peripheral blood progenitor cell (PBPC) counts during steady-state hematopoiesis allow to estimate the yield of mobilized PBPC after filgrastim (R-metHuG-CSF)-supported cytotoxic chemotherapy. Blood 85:2619–2626PubMedGoogle Scholar
  43. 43.
    Wuchter P, Ran D, Bruckner T, Schmitt T, Witzens-Harig M, Neben K, Goldschmidt H, Ho AD (2010) Poor mobilization of hematopoietic stem cells – definitions, incidence, risk factors and outcome of autologous transplantation. Bio Blood Marrow Transplant 16:490–499CrossRefGoogle Scholar
  44. 44.
    Thomas ED, Lochte HL Jr, Lu WC, Ferrebee JW (1957) Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N Engl J Med 257:491–496CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medicine V (Hematology, Oncology, Rheumatology)Heidelberg UniversityHeidelbergGermany

Personalised recommendations