Advertisement

Methods for Transposon Mutagenesis in Proteus mirabilis

  • Philip N. RatherEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2016)

Abstract

Several methods for transposon mutagenesis have been employed for use in P. mirabilis. The first method involves the use of mini-Tn5 derivatives, which are delivered by conjugation of a suicide plasmid containing this transposon, followed by transposition into the chromosome. A second method is the use of preformed transposon/transposase complexes (transposomes), which are introduced into P. mirabilis cells by electroporation. Each of these methods will be discussed along with the advantages and disadvantages of each.

Key words

Proteus Transposon mutagenesis Mini-Tn5 Transposome Swarming Virulence 

References

  1. 1.
    Armbruster CE, Mobley HL (2012) Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis. Nat Rev Microbiol 10:743–754CrossRefGoogle Scholar
  2. 2.
    Mobley HL, Belas R (1995) Swarming and pathogenicity of Proteus mirabilis in the urinary tract. Trends Microbiol 3:280–284CrossRefGoogle Scholar
  3. 3.
    Armbruster CE, Mobley HLT, Pearson MM (2018) Pathogenesis of Proteus mirabilis infection. EcoSal Plus 8.  https://doi.org/10.1128/ecosalplus.ESP-0009-2017
  4. 4.
    Morgenstein RM, Szostek B, Rather PN (2010) Regulation of gene expression during swarmer cell differentiation in Proteus mirabilis. FEMS Microbiol Rev 34:753–763CrossRefGoogle Scholar
  5. 5.
    Belas R, Erskine D, Flaherty D (1991) Proteus mirabilis mutants defective in swarmer cell differentiation and multicellular behavior. J Bacteriol 173:6279–6288CrossRefGoogle Scholar
  6. 6.
    Sturgill GM, Siddiqui S, Ding X, Pecora ND, Rather PN (2002) Isolation of lacZ fusions to Proteus mirabilis genes regulated by intercellular signaling: potential role for the sugar phosphotransferase (Pts) system in regulation. FEMS Microbiol Lett 217:43–50CrossRefGoogle Scholar
  7. 7.
    Sturgill G, Rather PN (2004) Evidence that putrescine acts as an extracellular signal required for swarming in Proteus mirabilis. Mol Microbiol 51:437–446CrossRefGoogle Scholar
  8. 8.
    Stevenson LG, Rather PN (2006) A novel gene involved in regulating the flagellar gene cascade in Proteus mirabilis. J Bacteriol 188:7830–7839CrossRefGoogle Scholar
  9. 9.
    Clemmer KM, Rather PN (2007) Regulation of flhDC expression in Proteus mirabilis. Res Microbiol 158:295–302CrossRefGoogle Scholar
  10. 10.
    Liaw SJ, Lai HC, Ho SW, Luh KT, Wang WB (2001) Characterisation of p-nitrophenylglycerol-resistant Proteus mirabilis super-swarming mutants. J Med Microbiol 50:1039–1048CrossRefGoogle Scholar
  11. 11.
    Zhao H, Li X, Johnson DE, Mobley HL (1999) Identification of protease and rpoN-associated genes of uropathogenic Proteus mirabilis by negative selection in a mouse model of ascending urinary tract infection. Microbiology 145(Pt 1):185–195CrossRefGoogle Scholar
  12. 12.
    Burall LS, Harro JM, Li X, Lockatell CV, Himpsl SD, Hebel JR, Johnson DE, Mobley HL (2004) Proteus mirabilis genes that contribute to pathogenesis of urinary tract infection: identification of 25 signature-tagged mutants attenuated at least 100-fold. Infect Immun 72:2922–2938CrossRefGoogle Scholar
  13. 13.
    Himpsl SD, Lockatell CV, Hebel JR, Johnson DE, Mobley HL (2008) Identification of virulence determinants in uropathogenic Proteus mirabilis using signature-tagged mutagenesis. J Med Microbiol 57:1068–1078CrossRefGoogle Scholar
  14. 14.
    Gibbs KA, Urbanowski ML, Greenberg EP (2008) Genetic determinants of self identity and social recognition in bacteria. Science 321:256–259CrossRefGoogle Scholar
  15. 15.
    Belas R, Erskine D, Flaherty D (1991) Transposon mutagenesis in Proteus mirabilis. J Bacteriol 173:6289–6293CrossRefGoogle Scholar
  16. 16.
    de Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in Gram-negative eubacteria. J Bacteriol 172:6568–6572CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologyEmory UniversityAtlantaUSA
  2. 2.Research ServiceAtlanta VA Medical CenterDecaturUSA

Personalised recommendations