Transposon Mutagenesis of Listeria monocytogenes

  • Oindrila Paul
  • Damayanti Chakravarty
  • Janet R. DonaldsonEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2016)


Listeria monocytogenes is a Gram-positive, facultative intracellular foodborne pathogen that enters the human digestive tract after the consumption of contaminated food. Much research has been done to understand the virulence factors of Listeria monocytogenes. One useful tool to study these virulence factors has been transposon mutagenesis. Many mutants can be generated at a time by performing high-throughput mutagenesis using transposons and later screening these mutants to identify features related to particular functions in the bacteria. Many transposon delivery systems are not ideal for transposon studies in Listeria monocytogenes, as the transposon system is too large, has lower transposition efficiency, and a high rate of plasmid retention. Therefore, a new mariner-based transposition system has been developed for Listeria monocytogenes. This system is an ideal high-throughput transposon mutagenesis as the rate of transposition is high and random, along with very low plasmid retention capacity.

Key words

Listeria monocytogenes Mariner Transposon Mutagenesis 


  1. 1.
    Ryser ET, Marth EH (1989) “New” food-borne pathogens of public health significance. J Am Diet Assoc 89:948–954PubMedGoogle Scholar
  2. 2.
    Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511PubMedPubMedCentralGoogle Scholar
  3. 3.
    Kwon YM, Ricke SC, Mandal RK (2016) Transposon sequencing: methods and expanding applications. Appl Microbiol Biotechnol 100:31–43CrossRefGoogle Scholar
  4. 4.
    Annous BA, Becker LA, Bayles DO, Labeda DP, Wilkinson BJ (1997) Critical role of anteiso-C15:0 fatty acid in the growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 63:3887–3894PubMedPubMedCentralGoogle Scholar
  5. 5.
    Zhu K, Bayles DO, Xiong A, Jayaswal RK, Wilkinson BJ (2005) Precursor and temperature modulation of fatty acid composition and growth of Listeria monocytogenes cold-sensitive mutants with transposon-interrupted branched-chain alpha-keto acid dehydrogenase. Microbiology 151:615–623CrossRefGoogle Scholar
  6. 6.
    Angelidis AS, Smith LT, Hoffman LM, Smith GM (2002) Identification of opuC as a chill-activated and osmotically activated carnitine transporter in Listeria monocytogenes. Appl Environ Microbiol 68:2644–2650CrossRefGoogle Scholar
  7. 7.
    Sleator RD, Wouters J, Gahan CG, Abee T, Hill C (2001) Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Appl Environ Microbiol 67:2692–2698CrossRefGoogle Scholar
  8. 8.
    Joseph B, Przybilla K, Stuhler C, Schauer K, Slaghuis J, Fuchs TM, Goebel W (2006) Identification of Listeria monocytogenes genes contributing to intracellular replication by expression profiling and mutant screening. J Bacteriol 188:556–568CrossRefGoogle Scholar
  9. 9.
    Gaillard JL, Berche P, Sansonetti P (1986) Transposon mutagenesis as a tool to study the role of hemolysin in the virulence of Listeria monocytogenes. Infect Immun 52:50–55PubMedPubMedCentralGoogle Scholar
  10. 10.
    Collatz E, Carlier C, Courvalin P (1984) Characterization of high-level aminoglycoside resistance in a strain of Streptococcus pneumoniae. J Gen Microbiol 130:1665–1671PubMedGoogle Scholar
  11. 11.
    Autret N, Dubail I, Trieu-Cuot P, Berche P, Charbit A (2001) Identification of new genes involved in the virulence of Listeria monocytogenes by signature-tagged transposon mutagenesis. Infect Immun 69:2054–2065CrossRefGoogle Scholar
  12. 12.
    Kathariou S, Metz P, Hof H, Goebel W (1987) Tn916-induced mutations in the hemolysin determinant affecting virulence of Listeria monocytogenes. J Bacteriol 169:1291–1297CrossRefGoogle Scholar
  13. 13.
    Camilli A, Portnoy A, Youngman P (1990) Insertional mutagenesis of Listeria monocytogenes with a novel Tn917 derivative that allows direct cloning of DNA flanking transposon insertions. J Bacteriol 172:3738–3744CrossRefGoogle Scholar
  14. 14.
    Muller A, Rychli K, Muhterem-Uyar M, Zaiser A, Stessl B, Guinane CM, Cotter PD, Wagner M, Schmitz-Esser S (2013) Tn6188 - a novel transposon in Listeria monocytogenes responsible for tolerance to benzalkonium chloride. PLoS One 8:e76835CrossRefGoogle Scholar
  15. 15.
    Muller A, Rychli K, Zaiser A, Wieser C, Wagner M, Schmitz-Esser S (2014) The Listeria monocytogenes transposon Tn6188 provides increased tolerance to various quaternary ammonium compounds and ethidium bromide. FEMS Microbiol Lett 361:166–173CrossRefGoogle Scholar
  16. 16.
    Cummins J, Casey PG, Joyce SA, Gahan CG (2013) A mariner transposon-based signature-tagged mutagenesis system for the analysis of oral infection by Listeria monocytogenes. PLoS One 8:e75437. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Picardeau M (2010) Transposition of fly mariner elements into bacteria as a genetic tool for mutagenesis. Genetica 138:551–558CrossRefGoogle Scholar
  18. 18.
    Plasterk RH, Izsvak Z, Ivics Z (1999) Resident aliens: the Tc1/mariner superfamily of transposable elements. Trends Genet 15:326–332CrossRefGoogle Scholar
  19. 19.
    Lampe DJ, Churchill ME, Robertson HM (1996) A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J 15:5470–5479CrossRefGoogle Scholar
  20. 20.
    Cao M, Bitar AP, Marquis H (2007) A mariner-based transposition system for Listeria monocytogenes. Appl Environ Microbiol 73:2758–2761CrossRefGoogle Scholar
  21. 21.
    Garsin DA, Urbach J, Huguet-Tapia JC, Peters JE, Ausubel FM (2004) Construction of an Enterococcus faecalis Tn917-mediated-gene-disruption library offers insight into Tn917 insertion patterns. J Bacteriol 186:7280–7289CrossRefGoogle Scholar
  22. 22.
    Zemansky J, Kline BC, Woodward JJ, Leber JH, Marquis H, Portnoy DA (2009) Development of a mariner-based transposon and identification of Listeria monocytogenes determinants, including the peptidyl-prolyl isomerase PrsA2, that contribute to its hemolytic phenotype. J Bacteriol 191:3950–3964CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Oindrila Paul
    • 1
  • Damayanti Chakravarty
    • 1
  • Janet R. Donaldson
    • 1
    Email author
  1. 1.Department of Cell and Molecular BiologyThe University of Southern MississippiHattiesburgUSA

Personalised recommendations