Implementation of Transposon Mutagenesis in Bifidobacterium

  • Lorena Ruiz
  • Douwe van SinderenEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2016)


Random transposon mutagenesis allows for relatively rapid, genome-wide surveys to detect genes involved in functional traits, by performing screens of mutant libraries. This approach has been widely applied to identify genes responsible for activities of interest in multiple eukaryote and prokaryote organisms, although most studies on microorganisms have focused on pathogenic and clinically relevant bacteria. In this chapter we describe the implementation of an in vitro Tn5-based transposome strategy to generate a large collection of random mutants in the gut commensal Bifidobacterium breve UCC2003, and discuss considerations when applying this mutagenesis system to other Bifidobacterium species or strains of interest.

Key words

Tn5 Transposon Bifidobacterium 


  1. 1.
    Tojo R, Suárez A, Clemente MG et al (2014) Intestinal microbiota in health and disease: role of bifidobacteria in gut homeostasis. World J Gastroenterol 20:15163–15176. CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Bottacini F, van Sinderen D, Ventura M (2017) Omics of bifidobacteria: research and insights into their health-promoting activities. Biochem J 474:4137–4152. CrossRefPubMedGoogle Scholar
  3. 3.
    Brancaccio VF, Zhurina DS, Riedel CU (2013) Tough nuts to crack: site-directed mutagenesis of bifidobacteria remains a challenge. Bioengineered 4:197–202. CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    O’Callaghan A, Bottacini F, O’Connell Motherway M, van Sinderen D (2015) Pangenome analysis of Bifidobacterium longum and site-directed mutagenesis through by-pass of restriction-modification systems. BMC Genomics 16:832. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Hidalgo-Cantabrana C, Sánchez B, Álvarez-Martín P et al (2015) A single mutation in the gene responsible for the mucoid phenotype of Bifidobacterium animalis subsp. lactis confers surface and functional characteristics. Appl Environ Microbiol 81:7960–7968. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Sakaguchi K, He J, Tani S et al (2012) A targeted gene knockout method using a newly constructed temperature-sensitive plasmid mediated homologous recombination in Bifidobacterium longum. Appl Microbiol Biotechnol 95:499–509. CrossRefPubMedGoogle Scholar
  7. 7.
    O’ Connell Motherway M, Watson D, Bottacini F et al (2014) Identification of restriction-modification systems of Bifidobacterium animalis subsp. lactis CNCM I-2494 by SMRT sequencing and associated methylome analysis. PLoS One 9:e94875. CrossRefPubMedGoogle Scholar
  8. 8.
    Hirayama Y, Sakanaka M, Fukuma H et al (2012) Development of a double-crossover markerless gene deletion system in Bifidobacterium longum: functional analysis of the α-galactosidase gene for raffinose assimilation. Appl Environ Microbiol 78(14):4984–4994. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    O’Connell Motherway M, O’Driscoll J, Fitzgerald GF, Van Sinderen D (2009) Overcoming the restriction barrier to plasmid transformation and targeted mutagenesis in Bifidobacterium breve UCC2003. Microb Biotechnol 2:321–332. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Bottacini F, Morrissey R, Roberts RJ et al (2018) Comparative genome and methylome analysis reveals restriction/modification system diversity in the gut commensal Bifidobacterium breve. Nucleic Acids Res 46:1860–1877. CrossRefPubMedGoogle Scholar
  11. 11.
    Picardeau M (2010) Transposition of fly mariner elements into bacteria as a genetic tool for mutagenesis. Genetica 138:551–558. CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Reznikoff WS, Goryshin IY, Jendrisak JJ (2004) Tn5 as a molecular genetics tool: in vitro transposition and the coupling of in vitro technologies with in vivo transposition. Methods Mol Biol 260:83–96. CrossRefPubMedGoogle Scholar
  13. 13.
    Lamberg A, Nieminen S, Qiao M, Savilahti H (2002) Efficient insertion mutagenesis strategy for bacterial genomes involving electroporation of in vitro-assembled DNA transposition complexes of bacteriophage mu. Appl Environ Microbiol 68:705–712. CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Ruiz L, Motherway MO, Lanigan N, van Sinderen D (2013) Transposon mutagenesis in Bifidobacterium breve: construction and characterization of a Tn5 transposon mutant library for Bifidobacterium breve UCC2003. PLoS One 8:e64699. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Alvarez-Martin P, Belen Florez A, Margolles A et al (2008) Improved cloning vectors for bifidobacteria, based on the Bifidobacterium catenulatum pBC1 replicon. Appl Environ Microbiol 74:4656–4665. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Johnson RC, Reznikoff WS (1983) DNA sequences at the ends of transposon Tn5 required for transposition. Nature 304:280–282. CrossRefPubMedGoogle Scholar
  17. 17.
    Flórez AB, Ammor MS, Alvarez-Martín P et al (2006) Molecular analysis of tet(W) gene-mediated tetracycline resistance in dominant intestinal Bifidobacterium species from healthy humans. Appl Environ Microbiol 72:7377–73799. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Barquist L, Boinett CJ, Cain AK (2013) Approaches to querying bacterial genomes with transposon-insertion sequencing. RNA Biol 10:1161–1169. CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sambrook J, Russell DW (2006) Purification of nucleic acids by extraction with phenol:chloroform. CSH Protoc 2006(1). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Microbiology and Biochemistry of Dairy ProductsIPLA-CSICVillaviciosaSpain
  2. 2.APC Microbiome IrelandUniversity College CorkCorkIreland
  3. 3.School of MicrobiologyUniversity College CorkCorkIreland

Personalised recommendations