Advertisement

Transposon Mutagenesis in Streptococcus Species

  • Martin Nilsson
  • Michael Givskov
  • Tim Tolker-NielsenEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2016)

Abstract

Mutant libraries, generated by transposons and screened for various phenotypes, have led to many important discoveries regarding gene functions in various organisms. In this chapter we describe the use of plasmid pMN100, a transposon vector constructed to perform in vivo transposition primarily in oral streptococci. Compared to in vitro transposition systems the conditional replicative features of the plasmid, and the inducible expression of the mariner Himar1 transposase, makes pMN100 particularly useful for bacterial strains showing a low transformation frequency. We outline how to transform plasmid pMN100 into Streptococcus mutans, carry out transposon mutagenesis, and determine the chromosomal location of inserted transposons. It is our prospect that the protocols can be used as guidelines for transposon mutagenesis in S. mutans as well as other species of streptococci.

Key words

In vivo transposon mutagenesis Mariner pMN100 Streptococci 

Notes

Acknowledgments

This work was supported by grants from the Danish Council for Independent Research and the Lundbeck Foundation.

References

  1. 1.
    Choi KH, Kim KJ (2009) Applications of transposon-based gene delivery system in bacteria. J Microbiol Biotechnol 19(3):217–228PubMedGoogle Scholar
  2. 2.
    Spatafora G, Rohrer K, Barnard D, Michalek S (1995) A Streptococcus mutans mutant that synthesizes elevated levels of intracellular polysaccharide is hypercariogenic in vivo. Infect Immun 63(7):2556–2563PubMedPubMedCentralGoogle Scholar
  3. 3.
    Gutierrez JA, Crowley PJ, Brown DP, Hillman JD, Youngman P, Bleiweis AS (1996) Insertional mutagenesis and recovery of interrupted genes of Streptococcus mutans by using transposon Tn917: preliminary characterization of mutants displaying acid sensitivity and nutritional requirements. J Bacteriol 178(14):4166–4175CrossRefGoogle Scholar
  4. 4.
    Boyd DA, Cvitkovitch DG, Bleiweis AS, Kiriukhin MY, Debabov DV, Neuhaus FC, Hamilton IR (2000) Defects in D-alanyl-lipoteichoic acid synthesis in Streptococcus mutans results in acid sensitivity. J Bacteriol 182(21):6055–6065CrossRefGoogle Scholar
  5. 5.
    Slater JD, Allen AG, May JP, Bolitho S, Lindsay H, Maskell DJ (2003) Mutagenesis of Streptococcus equi and Streptococcus suis by transposon Tn917. Vet Microbiol 93(3):197–206CrossRefGoogle Scholar
  6. 6.
    Thibessard A, Fernandez A, Gintz B, Decaris B, Leblond-Bourget N (2002) Transposition of pGh9:ISS1 is random and efficient in Streptococcus thermophilus CNRZ368. Can J Microbiol 48(5):473–478CrossRefGoogle Scholar
  7. 7.
    Lampe DJ (2010) Bacterial genetic methods to explore the biology of mariner transposons. Genetica 138(5):499–508CrossRefGoogle Scholar
  8. 8.
    Lampe DJ, Akerley BJ, Rubin EJ, Mekalanos JJ, Robertson HM (1999) Hyperactive transposase mutants of the Himar1 mariner transposon. Proc Natl Acad Sci U S A 96(20):11428–11433CrossRefGoogle Scholar
  9. 9.
    Picardeau M (2010) Transposition of fly mariner elements into bacteria as a genetic tool for mutagenesis. Genetica 138(5):551–558CrossRefGoogle Scholar
  10. 10.
    Lampe DJ, Churchill ME, Robertson HM (1996) A purified mariner transposase is sufficient to mediate transposition in vitro. EMBO J 15(19):5470–5479CrossRefGoogle Scholar
  11. 11.
    Li M, Rigby K, Lai Y, Nair V, Peschel A, Schittek B, Otto M (2009) Staphylococcus aureus mutant screen reveals interaction of the human antimicrobial peptide dermcidin with membrane phospholipids. Antimicrob Agents Chemother 53(10):4200–4210CrossRefGoogle Scholar
  12. 12.
    Nilsson M, Christiansen N, Hoiby N, Twetman S, Givskov M, Tolker-Nielsen T (2014) A mariner transposon vector adapted for mutagenesis in oral streptococci. MicrobiologyOpen 3(3):333–340CrossRefGoogle Scholar
  13. 13.
    Nilsson M, Rybtke M, Givskov M, Hoiby N, Twetman S, Tolker-Nielsen T (2016) The dlt genes play a role in antimicrobial tolerance of Streptococcus mutans biofilms. Int J Antimicrob Agents 48(3):298–304CrossRefGoogle Scholar
  14. 14.
    Biswas I, Drake L, Johnson S, Thielen D (2007) Unmarked gene modification in Streptococcus mutans by a cotransformation strategy with a thermosensitive plasmid. BioTechniques 42(4):487–490CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Martin Nilsson
    • 1
  • Michael Givskov
    • 1
    • 2
  • Tim Tolker-Nielsen
    • 1
    Email author
  1. 1.Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm CenterUniversity of CopenhagenCopenhagenDenmark
  2. 2.Singapore Center for Environmental Life Sciences EngineeringNanyang Technological UniversitySingaporeSingapore

Personalised recommendations