Advertisement

Efficient Gene Deletion Method for Listeria monocytogenes

  • Hossam Abdelhamed
  • Attila Karsi
  • Mark L. LawrenceEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2016)

Abstract

Inactivation or deletion of genes allows for investigation and understanding of gene function. To facilitate markerless gene deletion in Listeria monocytogenes, we developed a new suicide plasmid (pHoss1). pHoss1 contains the pMAD backbone, the secY antisense cassette from pIMAY driven by an inducible Pxyl/tetO promoter, a heat-sensitive origin of replication, four unique restriction sites (SalI, EcoRI, SmaI, and NcoI), and erythromycin resistance gene. We demonstrated that pHoss1 is very efficient for introducing mutations into different L. monocytogenes strains. In this chapter, we include a brief description of pHoss1 and the method used for gene deletion in L. monocytogenes using pHoss1.

Key words

Listeria monocytogenes pHoss1 Pxyl/tetO promoter secGene deletion 

References

  1. 1.
    Hensel M, Holden DW (1996) Molecular genetic approaches for the study of virulence in both pathogenic bacteria and fungi. Microbiology 142:1049–1058CrossRefGoogle Scholar
  2. 2.
    Reyrat JM, Pelicic V, Gicquel B, Rappuoli R (1998) Counterselectable markers: untapped tools for bacterial genetics and pathogenesis. Infect Immun 66:4011–4017PubMedPubMedCentralGoogle Scholar
  3. 3.
    Stibitz S (1994) Use of conditionally counterselectable suicide vectors for allelic exchange. Methods Enzymol 235:458–465CrossRefGoogle Scholar
  4. 4.
    Chakraborty T, Leimeister-Wachter M, Domann E, Hartl M, Goebel W, Nichterlein T, Notermans S (1992) Coordinate regulation of virulence genes in Listeria monocytogenes requires the product of the prfA gene. J Bacteriol 174:568–574CrossRefGoogle Scholar
  5. 5.
    Wuenscher MD, Kohler S, Goebel W, Chakraborty T (1991) Gene disruption by plasmid integration in Listeria monocytogenes: insertional inactivation of the listeriolysin determinant lisA. Mol Gen Genet 228:177–182CrossRefGoogle Scholar
  6. 6.
    Arnaud M, Chastanet A, Debarbouille M (2004) New vector for efficient allelic replacement in naturally nontransformable, low-GC-content, Gram-positive bacteria. Appl Environ Microbiol 70:6887–6891CrossRefGoogle Scholar
  7. 7.
    Bae T, Schneewind O (2006) Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid 55:58–63CrossRefGoogle Scholar
  8. 8.
    Monk IR, Gahan CG, Hill C (2008) Tools for functional postgenomic analysis of Listeria monocytogenes. Appl Environ Microbiol 74:3921–3934CrossRefGoogle Scholar
  9. 9.
    Abdelhamed H, Lawrence ML, Karsi A (2015) A novel suicide plasmid for efficient gene mutation in Listeria monocytogenes. Plasmid 81:1–8CrossRefGoogle Scholar
  10. 10.
    Monk IR, Shah IM, Xu M, Tan MW, Foster TJ (2012) Transforming the untransformable: application of direct transformation to manipulate genetically Staphylococcus aureus and Staphylococcus epidermidis. MBio 3(2):e00277.  https://doi.org/10.1128/mBio.00277-11 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Horton RM, Cai ZL, Ho SN, Pease LR (1990) Gene splicing by overlap extension: tailor-made genes using the polymerase chain reaction. Biotechniques 8:528–535PubMedGoogle Scholar
  12. 12.
    Gellin BG, Broome CV (1989) Listeriosis. JAMA 261:1313–1320CrossRefGoogle Scholar
  13. 13.
    Sambrook J, Russell DW (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hossam Abdelhamed
    • 1
  • Attila Karsi
    • 1
  • Mark L. Lawrence
    • 1
    Email author
  1. 1.College of Veterinary MedicineMississippi State UniversityMississippi StateUSA

Personalised recommendations