Advertisement

Transposon-Aided Capture of Antibiotic Resistance Plasmids from Complex Samples

  • Sarah DelaneyEmail author
  • Richard Murphy
  • Fiona Walsh
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2016)

Abstract

Transposon-aided capture of plasmids allows for antibiotic resistance plasmids to be acquired from complex samples. It is based on the insertion of a transposon, with a known origin of replication and selectable marker, into the plasmids present in a sample which can subsequently be captured after the removal of contaminating chromosomal DNA. Here we describe isolation of bacterial cells from a complex sample, DNA extraction, transposon-aided capture of plasmids in the sample, and analysis of the captured plasmids.

Key words

Transposon Plasmid Antibiotic resistance EZ-Tn5 Complex samples 

References

  1. 1.
    Carattoli A (2013) Plasmids and the spread of resistance. Int J Med Microbiol 303:298–304CrossRefGoogle Scholar
  2. 2.
    Bennett PM (2008) Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 153:S347–S357CrossRefGoogle Scholar
  3. 3.
    Munita JM, Arias CA (2016) Mechanisms of antibiotic resistance. Microbiol Spectr 4(2)Google Scholar
  4. 4.
    Kav AB, Benhar I, Mizrahi I (2013) A method for purifying high quality and high yield plasmid DNA for metagenomics and deep sequencing approaches. J Microbiol Methods 95:272–279CrossRefGoogle Scholar
  5. 5.
    Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7(6):1513–1523CrossRefGoogle Scholar
  6. 6.
    Mullany P, Allan E, Warburton PJ (2012) Tetracycline resistance genes and mobile genetic elements from the oral metagenome. Clin Microbiol Infect 18(Suppl. 4):58–61CrossRefGoogle Scholar
  7. 7.
    Delaney S, Murphy R, Walsh F (2018) A comparison of methods for the extraction of plasmids capable of conferring antibiotic resistance in a human pathogen from complex broiler cecal samples. Front Microbiol 9:1731.  https://doi.org/10.3389/fmicb.2018.01731 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dib JR, Wagenknecht M, Farías ME, Meinhardt F (2015) Strategies and approaches in plasmidome studies—uncovering plasmid diversity disregarding of linear elements? Front Microbiol 6:463.  https://doi.org/10.3389/fmicb.2015.00463 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Jørgensen TS, Kiil AS, Hansen MA, Sørensen SJ, Hansen LH (2015) Current strategies for mobilome research. Front Microbiol 5:750.  https://doi.org/10.3389/fmicb.2014.00750 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Szostková M, Horáková D (1998) The effect of plasmid DNA sizes and other factors on electrotransformation of Escherichia coli JM109. Bioelectrochem Bioenerg 47:319–323CrossRefGoogle Scholar
  11. 11.
    Warburton PJ, Allan E, Hunter S, Ward J, Booth V, Wade WG, Mullany P (2011) Isolation of bacterial extrachromosomal DNA from human dental plaque associated with periodontal disease, using transposon-aided capture (TRACA). FEMS Microbiol Ecol 78(2):349–354CrossRefGoogle Scholar
  12. 12.
    Jones BV, Marchesi JR (2007) Transposon-aided capture (TRACA) of plasmids resident in the human gut mobile metagenome. Nat Methods 4:51–61CrossRefGoogle Scholar
  13. 13.
    Zhang T, Zhang XX, Ye L (2011) Plasmid metagenome reveals high levels of antibiotic resistance genes and mobile genetic elements in activated sludge. PLoS One 6(10):e26041.  https://doi.org/10.1371/journal.0026041 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Burmølle M, Norman A, Sørensen SJ, Hestbjerg Hansen L (2012) Sequencing of IncX-plasmids suggests ubiquity of mobile forms of a biofilm-promoting gene cassette recruited from Klebsiella pneumoniae. PLoS One 7(7):e41259.  https://doi.org/10.1371/journal.pone.0041259 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Clinical and Laboratory Standards Institute (2016) Performance Standards for Antimicrobial Susceptibility. CLSI Document M100S. Clinical and Laboratory Standards Institute, Wayne, PAGoogle Scholar
  16. 16.
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16s ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research 41(1):e1–e1CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Antimicrobial Resistance and Microbiome Research Group, Department of BiologyMaynooth UniversityMaynooth, Co. KildareIreland
  2. 2.AlltechDunboyne, Co. MeathIreland

Personalised recommendations