Advertisement

Construction of DNA Barcode-Tagged Salmonella Strains

  • Yichao Yang
  • Reena Chandrashekar
  • Steven C. Ricke
  • Young Min KwonEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2016)

Abstract

This chapter provides a detailed protocol for construction of DNA barcode-tagged isogenic strains of Salmonella. The protocol is illustrated with S. Enteritidis in this chapter. However, this protocol should be widely applicable to other Salmonella serotypes. A series of the DNA barcode-tagged strains thus constructed can be used in combination with next generation sequencing or quantitative PCR to study the population dynamics of the bacterial pathogen during infection within the host or transmission within a population of the host in a quantitative manner.

Key words

Salmonella Population dynamics DNA barcode-tagging Overlapping extension PCR Red recombination system Next generation sequencing 

References

  1. 1.
    Varble A, Albrecht RA, Backes S, Crumiller M, Bouvier NM, Sachs D et al (2014) Influenza a virus transmission bottlenecks are defined by infection route and recipient host. Cell Host Microbe 16:691–700.  https://doi.org/10.1016/j.chom.2014.09.020 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lam LH, Monack DM (2014) Intraspecies competition for niches in the distal gut dictate transmission during persistent Salmonella infection. PLoS Pathog 10:e1004527.  https://doi.org/10.1371/journal.ppat.1004527 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Zhang T, Abel S, Abel Zur Wiesch P, Sasabe J, Davis BM, Higgins DE et al (2017) Deciphering the landscape of host barriers to Listeria monocytogenes infection. Proc Natl Acad Sci U S A 114:6334–6339.  https://doi.org/10.1073/pnas.1702077114 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yang Y, Ricke SC, Tellz G, Kwon YM (2017) Quantitative tracking of Salmonella Enteritidis transmission routes using barcode-tagged isogenic strains in chickens: proof-of-concept study. Front Vet Sci 4:15.  https://doi.org/10.3389/fvets.2017.00015 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Yang Y, Tellez G, Latorre JD, Ray PM, Hernandez X, Hargis BM, Ricke SC, Kwon YM (2018) Salmonella excludes Salmonella in poultry: confirming an old paradigm using conventional and barcode-tagging approaches. Front Vet Sci 5:101.  https://doi.org/10.3389/fvets.2018.00101 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645.  https://doi.org/10.1073/pnas.120163297 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Frost MR, Guggenheim JA (1999) Prevention of depurination during elution facilitates the reamplification of DNA from differential display gels. Nucleic Acids Res 27:e6CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yichao Yang
    • 1
  • Reena Chandrashekar
    • 1
  • Steven C. Ricke
    • 2
    • 3
  • Young Min Kwon
    • 1
    • 3
    Email author
  1. 1.Department of Poultry ScienceUniversity of ArkansasFayettevilleUSA
  2. 2.Department of Food Science, Center for Food SafetyUniversity of ArkansasFayettevilleUSA
  3. 3.Cell and Molecular Biology ProgramUniversity of ArkansasFayettevilleUSA

Personalised recommendations