Protocols of Conjugative Plasmid Transfer in Salmonella: Plate, Broth, and Filter Mating Approaches

  • Bijay K. KhajanchiEmail author
  • Pravin R. Kaldhone
  • Steven L. Foley
Part of the Methods in Molecular Biology book series (MIMB, volume 2016)


Bacterial conjugation is a natural process that allows for horizontal transmission of DNA from one bacterium to another. Several plasmids carry transposons that encode multiple antimicrobial and metal resistance genes. Conjugative plasmid transfer requires intimate cell-to-cell contacts between the donor and the recipient. Self-conjugative plasmids harbor tra genes which facilitate plasmid transfer from donor to recipient bacterial strain. Here we describe different methods of conjugative plasmid transfers via conjugation.

Key words

Conjugation Plasmid Salmonella tra genes Transposons 



The authors would like to thank Drs. Ashraf Khan and Jing Han for their insightful review of the book chapter. The opinions expressed in this book chapter are solely the responsibility of the authors and do not necessarily represent the official views and policy of the US Food and Drug Administration. Reference to any commercial materials, equipment, or process does not in any way constitute approval, endorsement, or recommendation by the Food and Drug Administration.


  1. 1.
    Richter-Dahlfors A, Buchan AM, Finlay BB (1997) Murine salmonellosis studied by confocal microscopy: Salmonella typhimurium resides intracellularly inside macrophages and exerts a cytotoxic effect on phagocytes in vivo. J Exp Med 186:569–580CrossRefGoogle Scholar
  2. 2.
    Rotger R, Casadesus J (1999) The virulence plasmids of Salmonella. Int Microbiol 2:177–184PubMedGoogle Scholar
  3. 3.
    Sheppard M, Webb C, Heath F et al (2003) Dynamics of bacterial growth and distribution within the liver during Salmonella infection. Cell Microbiol 5:593–600CrossRefGoogle Scholar
  4. 4.
    Ahmer BM, Tran M, Heffron F (1999) The virulence plasmid of Salmonella typhimurium is self-transmissible. J Bacteriol 18:1364–1368Google Scholar
  5. 5.
    Novick RP (1987) Plasmid incompatibility. Microbiol Rev 51:381–395PubMedPubMedCentralGoogle Scholar
  6. 6.
    Silverman PM (1997) Towards a structural biology of bacterial conjugation. Mol Microbiol 23:423–429CrossRefGoogle Scholar
  7. 7.
    Nelson W, Howard M, Sherman J et al (1995) The traY gene product and integration host factor stimulate Escherichia coli DNA helicase I-catalyzed nicking at the F plasmid oriT. J Biol Chem 270(28):374–328, 380Google Scholar
  8. 8.
    Howard M, Nelson W, Matson S (1995) Stepwise assembly of a relaxosome at the F plasmid origin of transfer. J Biol Chem 270:28381–28386CrossRefGoogle Scholar
  9. 9.
    Matson SW, Sampson JK, Byrd DRN (2001) F plasmid conjugative DNA transfer. J Biol Chem 276:2372–2379CrossRefGoogle Scholar
  10. 10.
    Tsai MM, Fu YH, Deonier RC (1990) Intrinsic bends and integration host factor binding at F plasmid oriT. J Bacteriol 172:4603–4609CrossRefGoogle Scholar
  11. 11.
    Han J, Lynne AM, David DE et al (2012) DNA sequence analysis of multidrug resistance encoding plasmids from Salmonella enterica serotype Heidelberg isolates. PLoS One 7:e51160CrossRefGoogle Scholar
  12. 12.
    Zimbro MJ, Power DA (2003) Difco & BBL Manual: Manual of Microbiological Culture Media. Becton, Dickinson and Company, Sparks, MDGoogle Scholar
  13. 13.
    Jacoby GA, Han P (1996) Detection of extended-spectrum betalactamases in clinical isolates of Klebsiella pneumoniae and Escherichia coli. J Clin Microbiol 34:908–911PubMedPubMedCentralGoogle Scholar
  14. 14.
    Khajanchi BK, Hasan NA, Choi SY et al (2017) Comparative genomic analysis and characterization of incompatibility group FIB plasmid encoded virulence factors of Salmonella enterica isolated from food sources. BMC Genomics 18:570. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kaldhone PR, Han J, Deck J et al (2018) Evaluation of the genetics and functionality of plasmids in Incompatibility Group I1 (IncI1) positive Salmonella enterica. Foodborne Pathog Dis 15(3):168–176. CrossRefPubMedGoogle Scholar
  16. 16.
    Kaldhone PR, Nayak R, Lynne AM et al (2008) Characterization of Salmonella enterica serovar Heidelberg from turkey-associated sources. Appl Environ Microbiol 74:5038–5046CrossRefGoogle Scholar
  17. 17.
    Johnson TJ, Nolan LK (2009) Plasmid replicon typing. Methods Mol Biol 551:27–35CrossRefGoogle Scholar
  18. 18.
    Carattoli A, Bertini A, Villa L et al (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63:219–228CrossRefGoogle Scholar
  19. 19.
    CLSI (2018a) Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals (VET01), 5th edn. Clinical and Laboratory Standards Institute, Wayne, PAGoogle Scholar
  20. 20.
    CLSI (2018b) Performance standards for antimicrobial susceptibility testing (M100), 28th edn. Clinical and Laboratory Standards Institute, Wayne, PAGoogle Scholar
  21. 21.
    Khajanchi BK, Han J, Gokulan K et al (2016) Draft genome sequences of four Salmonella enterica strains isolated from turkey-associated sources. Genome Announc 4(5):e01122–e01116CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bijay K. Khajanchi
    • 1
    Email author
  • Pravin R. Kaldhone
    • 1
  • Steven L. Foley
    • 1
  1. 1.U.S. Food and Drug AdministrationNational Center for Toxicological ResearchJeffersonUSA

Personalised recommendations