Transposon Mutagenesis in Mycobacterium avium Subspecies Paratuberculosis

  • John P. BannantineEmail author
  • Denise K. Zinniel
  • Raúl G. Barletta
Part of the Methods in Molecular Biology book series (MIMB, volume 2016)


While transposon mutagenesis has been developed for Mycobacterium avium subspecies paratuberculosis (Map), relatively few laboratories have adopted this important genetic tool to examine gene function and essentiality. Here we describe the construction of a Map transposon library using the Himar1 mariner transposon, but concepts can also be applied to the Tn5367 transposon, which has also been used by our group. Delivery of the transposon is by a temperature-sensitive phagemid, ϕMycoMarT7, and plating transductants requires patience and specialized media due to length of incubation required to observe colonies. Several transposon mutants obtained from these libraries have been tested in vaccine and pathogenesis studies. By providing the following detailed protocol herein, we expect to demystify the procedure and encourage additional investigators to incorporate transposon mutagenesis in their studies on Johne’s disease.

Key words

Transposon mutagenesis Mycobacterium Johne’s disease 



This work was supported by the USDA-Agricultural Research Service and the USDA-National Institute of Food and Agriculture grant award 2013-67015.


  1. 1.
    Foley-Thomas EM, Whipple DL, Bermudez LE, Barletta RG (1995) Phage infection, transfection and transformation of Mycobacterium avium complex and Mycobacterium paratuberculosis. Microbiology 141(Pt 5):1173–1181CrossRefGoogle Scholar
  2. 2.
    Harris NB, Feng Z, Liu X, Cirillo SL, Cirillo JD, Barletta RG (1999) Development of a transposon mutagenesis system for Mycobacterium avium subsp. paratuberculosis. FEMS Microbiol Lett 175(1):21–26. doi:S0378-1097(99)00170-6 [pii]CrossRefGoogle Scholar
  3. 3.
    Cirillo JD, Barletta RG, Bloom BR, Jacobs WR Jr (1991) A novel transposon trap for mycobacteria: isolation and characterization of IS1096. J Bacteriol 173(24):7772–7780CrossRefGoogle Scholar
  4. 4.
    Rathnaiah G, Lamont EA, Harris NB, Fenton RJ, Zinniel DK, Liu X, Sotos J, Feng Z, Livneh-Kol A, Shpigel NY, Czuprynski CJ, Sreevatsan S, Barletta RG (2014) Generation and screening of a comprehensive Mycobacterium avium subsp. paratuberculosis transposon mutant bank. Front Cell Infect Microbiol 4:144. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ghosh P, Wu CW, Talaat AM (2013) Key role for the alternative sigma factor, SigH, in the intracellular life of Mycobacterium avium subsp. paratuberculosis during macrophage stress. Infect Immun 81(6):2242–2257. CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Shippy DC, Lemke JJ, Berry A, Nelson K, Hines ME 2nd, Talaat AM (2017) Superior protection from live-attenuated vaccines directed against Johne’s disease. Clin Vaccine Immunol 24(1).
  7. 7.
    Chen JW, Scaria J, Chang YF (2012) Phenotypic and transcriptomic response of auxotrophic Mycobacterium avium subsp. paratuberculosis leuD mutant under environmental stress. PLoS One 7(6):e37884. CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Park KT, Dahl JL, Bannantine JP, Barletta RG, Ahn J, Allen AJ, Hamilton MJ, Davis WC (2008) Demonstration of allelic exchange in the slow-growing bacterium Mycobacterium avium subsp. paratuberculosis, and generation of mutants with deletions at the pknG, relA, and lsr2 loci. Appl Environ Microbiol 74(6):1687–1695. AEM.01208-07 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Park KT, Allen AJ, Barrington GM, Davis WC (2014) Deletion of relA abrogates the capacity of Mycobacterium avium paratuberculosis to establish an infection in calves. Front Cell Infect Microbiol 4:64. CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Faisal SM, Chen JW, Yan F, Chen TT, Useh NM, Yan W, Guo S, Wang SJ, Glaser AL, McDonough SP, Singh B, Davis WC, Akey BL, Chang YF (2013) Evaluation of a Mycobacterium avium subsp. paratuberculosis leuD mutant as a vaccine candidate against challenge in a caprine model. Clin Vaccine Immunol 20(4):572–581. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rathnaiah G, Bannantine JP, Bayles DO, Zinniel DK, Stabel JR, Grohn YT, Barletta RG (2016) Analysis of Mycobacterium avium subsp. paratuberculosis mutant libraries reveals loci-dependent transposition biases and strategies to novel mutant discovery. Microbiology. CrossRefGoogle Scholar
  12. 12.
    Danelishvili L, Wu M, Stang B, Harriff M, Cirillo SL, Cirillo JD, Bildfell R, Arbogast B, Bermudez LE (2007) Identification of Mycobacterium avium pathogenicity island important for macrophage and amoeba infection. Proc Natl Acad Sci U S A 104(26):11038–11043. 0610746104 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Wu CW, Livesey M, Schmoller SK, Manning EJ, Steinberg H, Davis WC, Hamilton MJ, Talaat AM (2007) Invasion and persistence of Mycobacterium avium subsp. paratuberculosis during early stages of Johne’s disease in calves. Infect Immun 75(5):2110–2119. IAI.01739-06 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Bannantine JP, Everman JL, Rose SJ, Babrak L, Katani R, Barletta RG, Talaat AM, Grohn YT, Chang YF, Kapur V, Bermudez LE (2014) Evaluation of eight live attenuated vaccine candidates for protection against challenge with virulent Mycobacterium avium subspecies paratuberculosis in mice. Front Cell Infect Microbiol 4:88. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Shin SJ, Wu CW, Steinberg H, Talaat AM (2006) Identification of novel virulence determinants in Mycobacterium paratuberculosis by screening a library of insertional mutants. Infect Immun 74(7):3825–3833. 74/7/3825 [pii]CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Bardarov S, Kriakov J, Carriere C, Yu S, Vaamonde C, McAdam RA, Bloom BR, Hatfull GF, Jacobs WR Jr (1997) Conditionally replicating mycobacteriophages: a system for transposon delivery to Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 94(20):10961–10966CrossRefGoogle Scholar
  17. 17.
    Sassetti CM, Boyd DH, Rubin EJ (2001) Comprehensive identification of conditionally essential genes in mycobacteria. Proc Natl Acad Sci U S A 98(22):12712–12717. CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Rubin EJ, Akerley BJ, Novik VN, Lampe DJ, Husson RN, Mekalanos JJ (1999) In vivo transposition of mariner-based elements in enteric bacteria and mycobacteria. Proc Natl Acad Sci U S A 96(4):1645–1650CrossRefGoogle Scholar
  19. 19.
    Reddacliff LA, Nicholls PJ, Vadali A, Whittington RJ (2003) Use of growth indices from radiometric culture for quantification of sheep strains of Mycobacterium avium subsp. paratuberculosis. Appl Environ Microbiol 69(6):3510–3516CrossRefGoogle Scholar
  20. 20.
    Chacon O, Bermudez LE, Zinniel DK, Chahal HK, Fenton RJ, Feng Z, Hanford K, Adams LG, Barletta RG (2009) Impairment of D-alanine biosynthesis in Mycobacterium smegmatis determines decreased intracellular survival in human macrophages. Microbiology 155(Pt 5):1440–1450. CrossRefPubMedGoogle Scholar
  21. 21.
    Larsen MH, Biermann K, Jacobs WR Jr (2007) Laboratory maintenance of Mycobacterium tuberculosis. Curr Protoc Microbiol. Chapter 10:Unit 10A 11. Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • John P. Bannantine
    • 1
    Email author
  • Denise K. Zinniel
    • 2
  • Raúl G. Barletta
    • 2
  1. 1.USDA-ARS-National Animal Disease CenterAmesUSA
  2. 2.School of Veterinary Medicine and Biomedical SciencesUniversity of NebraskaLincolnUSA

Personalised recommendations