Advertisement

Phloem pp 73-79 | Cite as

Methods of Phloem Visualization: A Clear Future in Sight?

  • Elisabeth TruernitEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2014)

Abstract

There have been exciting new results in phloem research in recent years, at least in part made possible by the rapid advancement of microscopic techniques. Several methods for visualizing phloem cells are available. The suitability of each method depends on the organ and species being studied, and on the scientific question being addressed. This review will briefly explain the specific challenges associated with phloem cell visualization. It will then focus on common methods currently being used for studying phloem anatomy, development, and function. Emphasis will be placed on the most recent improvements in imaging techniques which had, or most certainly will have, an impact on phloem research.

Key words

Sieve element Companion cell Whole-mount staining Confocal microscopy Electron microscopy X-ray microtomography Super-resolution microscopy Phloem development 

Abbreviations

CM

Confocal microscopy

mPS-PI

Modified pseudo-Schiff propidium iodide

SBFSEM

Serial block face scanning electron microscopy

SE

Sieve element

SEM

Scanning electron microscopy

TEM

Transmission electron microscopy

μCT

High-resolution X-ray microtomography

Notes

Acknowledgments

I am grateful to David Seung for critical reading of the manuscript.

References

  1. 1.
    Knoblauch M, Oparka K (2012) The structure of the phloem—still more questions than answers. Plant J 70:147–156CrossRefGoogle Scholar
  2. 2.
    Truernit E (2014) Phloem imaging. J Exp Bot 65:1681–1688CrossRefGoogle Scholar
  3. 3.
    Esau K (1969) The phloem, vol 2. Gebrüder Bornträger, Berlin StuttgartGoogle Scholar
  4. 4.
    Schulz A (1998) Phloem, structure related to function. In: Progress in botany. Springer, Berlin, pp 429–475CrossRefGoogle Scholar
  5. 5.
    Erni R, Rossell MD, Kisielowski C, Dahmen U (2009) Atomic-resolution imaging with a sub-50-pm electron probe. Phys Rev Lett 102:096101CrossRefGoogle Scholar
  6. 6.
    Abbe E (1873) Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung. Arch Mikrosk Anat 9:413–418CrossRefGoogle Scholar
  7. 7.
    Amiard V, Demmig-Adams B, Mueh KE, Turgeon R, Combs AF, Adams WW 3rd (2007) Role of light and jasmonic acid signaling in regulating foliar phloem cell wall ingrowth development. New Phytol 173:722–731CrossRefGoogle Scholar
  8. 8.
    Batashev DR, Pakhomova MV, Razumovskaya AV, Voitsekhovskaja OV, Gamalei YV (2013) Cytology of the minor-vein phloem in 320 species from the subclass Asteridae suggests a high diversity of phloem-loading modes. Front Plant Sci 4:312CrossRefGoogle Scholar
  9. 9.
    Bussieres P (2014) Estimating the number and size of phloem sieve plate pores using longitudinal views and geometric reconstruction. Sci Rep 4:4929CrossRefGoogle Scholar
  10. 10.
    Furuta KM, Yadav SR, Lehesranta S, Belevich I, Miyashima S, Heo JO, Vaten A, Lindgren O, De Rybel B, Van Isterdael G et al (2014) Plant development. Arabidopsis NAC45/86 direct sieve element morphogenesis culminating in enucleation. Science 345:933–937CrossRefGoogle Scholar
  11. 11.
    Dettmer J, Ursache R, Campilho A, Miyashima S, Belevich I, O’Regan S, Mullendore DL, Yadav SR, Lanz C, Beverina L et al (2014) CHOLINE TRANSPORTER-LIKE1 is required for sieve plate development to mediate long-distance cell-to-cell communication. Nat Commun 5:4276CrossRefGoogle Scholar
  12. 12.
    Ross-Elliott TJ, Jensen KH, Haaning KS, Wager BM, Knoblauch J, Howell AH, Mullendore DL, Monteith AG, Paultre D, Yan D et al (2017) Phloem unloading in Arabidopsis roots is convective and regulated by the phloem-pole pericycle. elife 6:e24125CrossRefGoogle Scholar
  13. 13.
    Brodersen CR (2013) Visualizing wood anatomy in three dimensions with high-resolution X-ray micro-tomography (μCT)—a review. IAWA J 34:408–424CrossRefGoogle Scholar
  14. 14.
    Sevanto S, Ryan M, Turin Dickman L, Derome D, Patera A, Defraeye T, Pangle RE, Hudson PJ, Pockman WT (2018) Is desiccation tolerance and avoidance reflected in xylem and phloem anatomy of two co-existing arid-zone coniferous trees? Plant Cell Environ 218:1551–1564CrossRefGoogle Scholar
  15. 15.
    Jyske TM, Suuronen J-P, Pranovich AV, Laakso T, Watanabe U, Kuroda K, Abe H (2015) Seasonal variation in formation, structure, and chemical properties of phloem in Picea abies as studied by novel microtechniques. Planta 242:613–629CrossRefGoogle Scholar
  16. 16.
    Liesche J, Pace MR, Xu Q, Li Y, Chen S (2017) Height-related scaling of phloem anatomy and the evolution of sieve element end wall types in woody plants. New Phytol 214:245–256CrossRefGoogle Scholar
  17. 17.
    Torode TA, O’Neill R, Marcus SE, Cornuault V, Pose S, Lauder RP, Kracun SK, Rydahl MG, Andersen MCF, Willats WGT et al (2018) Branched pectic galactan in phloem-sieve-element cell walls: implications for cell mechanics. Plant Physiol 176:1547–1558CrossRefGoogle Scholar
  18. 18.
    Ruiz-Sola MÁ, Coiro M, Crivelli S, Zeeman SC, Schmidt Kjølner Hansen S, Truernit E (2017) OCTOPUS-LIKE 2, a novel player in Arabidopsis root and vascular development, reveals a key role for OCTOPUS family genes in root metaphloem sieve tube differentiation. New Phytol 301:653–624Google Scholar
  19. 19.
    Cayla T, Batailler B, Le Hir R, Revers F, Anstead JA, Thompson GA, Grandjean O, Dinant S (2015) Live imaging of companion cells and sieve elements in Arabidopsis leaves. PLoS One 10:e0118122CrossRefGoogle Scholar
  20. 20.
    Gujas B, Cruz TMD, Kastanaki E, Vermeer JEM, Munnik T, Rodriguez-Villalon A (2017) Perturbing phosphoinositide homeostasis oppositely affects vascular differentiation in Arabidopsis thaliana roots. Development 144:3578–3589CrossRefGoogle Scholar
  21. 21.
    Froelich DR, Mullendore DL, Jensen KH, Ross-Elliott TJ, Anstead JA, Thompson GA, Pelissier HC, Knoblauch M (2012) Phloem ultrastructure and pressure flow: sieve-element-occlusion-related agglomerations do not affect translocation. Plant Cell 23:4428–4445CrossRefGoogle Scholar
  22. 22.
    Rodriguez-Villalon A, Gujas B, Kang YH, Breda AS, Cattaneo P, Depuydt S, Hardtke CS (2014) Molecular genetic framework for protophloem formation. Proc Natl Acad Sci U S A 111:11551–11556CrossRefGoogle Scholar
  23. 23.
    Lee JY, Colinas J, Wang JY, Mace D, Ohler U, Benfey PN (2006) Transcriptional and posttranscriptional regulation of transcription factor expression in Arabidopsis roots. Proc Natl Acad Sci U S A 103:6055–6060CrossRefGoogle Scholar
  24. 24.
    Geldner N, Dénervaud-Tendon V, Hyman DL, Mayer U, Stierhof Y-D, Chory J (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59:169–178CrossRefGoogle Scholar
  25. 25.
    Anne P, Hardtke CS (2017) Phloem function and development-biophysics meets genetics. Curr Opin Plant Biol 43:22–28CrossRefGoogle Scholar
  26. 26.
    Rodriguez-Villalon A (2016) Wiring a plant: genetic networks for phloem formation in Arabidopsis thaliana roots. New Phytol 210:45–50CrossRefGoogle Scholar
  27. 27.
    Truernit E, Bauby H, Dubreucq B, Grandjean O, Runions J, Barthelemy J, Palauqui JC (2008) High-resolution whole-mount imaging of three-dimensional tissue organization and gene expression enables the study of phloem development and structure in Arabidopsis. Plant Cell 20:1494–1503CrossRefGoogle Scholar
  28. 28.
    Coiro M, Truernit E (2017) Xylem characterization using improved pseudo-Schiff propidium iodide staining of whole mount samples and confocal laser-scanning microscopy. Methods Mol Biol 1544:127–132CrossRefGoogle Scholar
  29. 29.
    Chinnappa KSA, Nguyen TTS, Hou JX, Wu YZ, McCurdy DW (2013) Phloem parenchyma transfer cells in Arabidopsis—an experimental system to identify transcriptional regulators of wall ingrowth formation. Front Plant Sci 4:1–6Google Scholar
  30. 30.
    Kurihara D, Mizuta Y, Sato Y, Higashiyama T (2015) ClearSee: a rapid optical clearing reagent for whole-plant fluorescence imaging. Development 142:4168–4179CrossRefGoogle Scholar
  31. 31.
    Ursache R, Andersen TG, Marhavý P, Geldner N (2018) A protocol for combining fluorescent proteins with histological stains for diverse cell wall components. Plant J 93:399–412CrossRefGoogle Scholar
  32. 32.
    Furuta KM, Hellmann E, Helariutta Y (2014) Molecular control of cell specification and cell differentiation during procambial development. Annu Rev Plant Biol 65:607–638CrossRefGoogle Scholar
  33. 33.
    Knoblauch M, Knoblauch J, Mullendore DL, Savage JA, Babst BA, Beecher SD, Dodgen AC, Jensen KH, Holbrook NM (2016) Testing the Munch hypothesis of long distance phloem transport in plants. elife 5:e15341CrossRefGoogle Scholar
  34. 34.
    Bell K, Mitchell S, Paultre D, Posch M, Oparka K (2013) Correlative imaging of fluorescent proteins in resin-embedded plant material. Plant Physiol 161:1595–1603CrossRefGoogle Scholar
  35. 35.
    Stanfield RC, Hacke UG, Laur J (2017) Are phloem sieve tubes leaky conduits supported by numerous aquaporins? Am J Bot 104:719–732CrossRefGoogle Scholar
  36. 36.
    Ziomkiewicz I, Sporring J, Pomorski TG, Schulz A (2015) Novel approach to measure the size of plasma-membrane nanodomains in single molecule localization microscopy. Cytometry A 87:868–877CrossRefGoogle Scholar
  37. 37.
    Schubert V (2017) Super-resolution microscopy—applications in plant cell research. Front Plant Sci 8:531CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Biology, Institute of Molecular Plant BiologyETH ZurichZurichSwitzerland

Personalised recommendations