Advertisement

Phloem pp 397-408 | Cite as

Making Microfluidic Devices that Simulate Phloem Transport

  • Jean Comtet
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2014)

Abstract

Phloem tissues are exquisitely difficult to probe experimentally. The biomimetic approach based on synthetic phloem devices might prove useful by allowing to uncover the dynamics and physicochemical couplings of the phloem. In this chapter we discuss the design of a synthetic microfluidic device simulating phloem transport, and the importance of such a device in testing various hypotheses of phloem physiology.

Key words

Phloem Osmosis Sugars Microfluidics Biomimetics Sucrose transport 

References

  1. 1.
    Münch E (1930) Die Stoffbewegungen in der Pflanze. Gustav Fischer, JenaGoogle Scholar
  2. 2.
    Münch E (1927) Versuche über den Saftkreislauf. Ber Dtsch Bot Ges 45:340–356Google Scholar
  3. 3.
    Knoblauch M, Peters WS (2010) Münch, morphology, microfluidics—our structural problem with the phloem. Plant Cell Environ 33(9):1439–1452PubMedGoogle Scholar
  4. 4.
    Eschrich W, Evert RF, Young JH (1972) Solution flow in tubular semipermeable membranes. Planta 107(4):279–300CrossRefGoogle Scholar
  5. 5.
    Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411CrossRefGoogle Scholar
  6. 6.
    Jensen KH, Lee J, Bohr T, Bruus H (2009) Osmotically driven flows in microchannels separated by a semipermeable membrane. Lab Chip 9:2093CrossRefGoogle Scholar
  7. 7.
    Jensen KH, Rio E, Hansen R, Clanet C, Bohr T (2009) Osmotically driven pipe flows and their relation to sugar transport in plants. J Fluid Mech 636:371–396CrossRefGoogle Scholar
  8. 8.
    Jensen KH, Lee J, Bohr T, Bruus H, Holbrook MN, Zwieniecki MA (2011) Optimality of the Münch mechanism for translocation of sugars in plants. J R Soc Interface 8(61):1155–1165CrossRefGoogle Scholar
  9. 9.
    Lang A (1973) A working model of a sieve tube. J Exp Bot 24:896–904CrossRefGoogle Scholar
  10. 10.
    Haaning LS, Jensen KVH, Hélix-Nielsen C, Berg-Sørensen K, Bohr T (2013) Efficiency of osmotic pipe flows. Phys Rev E 87(5):053019CrossRefGoogle Scholar
  11. 11.
    Comtet J, Jensen KH, Turgeon R, Stroock AD, Hosoi AE (2017) Passive phloem loading and long-distance transport in a synthetic tree-on-a-chip. Nat Plants 3(4):17032CrossRefGoogle Scholar
  12. 12.
    Stroock AD, Pagay VV, Zwieniecki MA, Holbrook MN (2014) The physicochemical hydrodynamics of vascular plants. Annu Rev Fluid Mech 46:615–642CrossRefGoogle Scholar
  13. 13.
    Rennie EA, Turgeon R (2009) A comprehensive picture of phloem loading strategies. Proc Natl Acad Sci U S A 106:14162–14167CrossRefGoogle Scholar
  14. 14.
    Comtet J, Turgeon R, Stroock A (2017) Phloem loading through plasmodesmata: a biophysical analysis. Plant Physiol 175(2):904–915PubMedPubMedCentralGoogle Scholar
  15. 15.
    Yuen PK, Goral VN (2010) Low-cost rapid prototyping of flexible microfluidic devices using a desktop digital craft cutter. Lab Chip 10(3):384–387CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jean Comtet
    • 1
  1. 1.Laboratoire de Physique Statistique, Ecole Normale Supérieure, UMR CNRS 8550, PSL Research UniversityParis CedexFrance

Personalised recommendations