Advertisement

Phloem pp 345-369 | Cite as

Using a Multi-compartmental Metabolic Model to Predict Carbon Allocation in Arabidopsis thaliana

  • Maksim ZakhartsevEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2014)

Abstract

The molecular mechanism of loading/unloading of sucrose into/from the phloem plays an important role in sucrose translocation among plant tissues. Perturbation of this mechanism results in growth phenotypes of a plant. In order to better understand the coupling of sucrose translocation with metabolic processes a multi-compartmental metabolic network of Arabidopsis thaliana was reconstructed and optimized with respect to biomass growth, both in light and in dark conditions. The model can be used to perform flux balance analysis of metabolic fluxes through the central carbon metabolism and catabolic and anabolic pathways. Balances and turnover of energy (ATP/ADP) and redox metabolites (NAD(P)H/NAD(P)) as well as proton concentrations in different compartments can be estimated. Importantly, the model can be used to quantify the translocation of sucrose from source to sink tissues through phloem in association with an integral balance of protons, which in turn is defined by the operational modes of the energy metabolism (light and dark conditions). This chapter describes how a multi-compartmental model to predict carbon allocation is constructed and used.

Key words

Energy metabolism Multi-compartment metabolic model Central carbon metabolism Sucrose metabolism Sucrose transport Flux balance analysis Diurnal growth 

Notes

Acknowledgments

The author acknowledges Prof. Dr. Waltraud X. Schulze (Plant Systems Biology, University of Hohenheim, Stuttgart, Germany) for the collaboration in this research, which has been supported by a research grant of the German Research foundation (DFG). This publication has been supported by Research Council of Norway grant 248792, project of Digital Life Norway in which Norwegian University of Life Sciences (NMBU) is the node for Digital Production Biology.

References

  1. 1.
    Taiz L, Zeiger E (2010) Plant physiology, 5th edn. Sinauer Associates, Inc., SunderlandGoogle Scholar
  2. 2.
    Scialdone A, Mugford ST, Feike D, Skeffington A, Borrill P, Graf A, Smith AM, Howard M (2013) Arabidopsis plants perform arithmetic division to prevent starvation at night. elife 2:e00669.  https://doi.org/10.7554/eLife.00669CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Chapin FS, Schulze ED, Mooney HA (1990) The ecology and economics of storage in plants. Annu Rev Ecol Syst 21:423–447CrossRefGoogle Scholar
  4. 4.
    Seaton DD, Ebenhöh O, Millar AJ, Pokhilko A (2014) Regulatory principles and experimental approaches to the circadian control of starch turnover. J R Soc Interface 11(91):20130979.  https://doi.org/10.1098/rsif.2013.0979CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Caspar T, Huber SC, Somerville C (1985) Alterations in growth, photosynthesis, and respiration in a starchless mutant of Arabidopsis thaliana (L.) deficient in chloroplast phosphoglucomutase activity. Plant Physiol 79:1–7CrossRefGoogle Scholar
  6. 6.
    Schulze W, Stitt M, Schulze ED, Neuhaus HE, Fichtner K (1991) A quantification of the significance of assimilatory starch for growth of Arabidopsis thaliana L. Heynh. Plant Physiol 95:890–895CrossRefGoogle Scholar
  7. 7.
    Schulze W, Schulze ED, Stader J, Heilmeier H, Stitt M, Mooney HA (1994) Growth and reproduction of Arabidopsis thaliana in relation to storage of starch and nitrate in the wild-type and in starch-deficient and nitrate-uptake-deficient mutants. Plant Cell Environ 17:795–809CrossRefGoogle Scholar
  8. 8.
    Yazdanbakhsh N, Sulpice R, Graf A, Stitt M, Fisahn J (2001) Circadian control of root elongation and C partitioning in Arabidopsis thaliana. Plant Cell Environ 34:877–894CrossRefGoogle Scholar
  9. 9.
    Milne RJ, Byrt CS, Patrick JW, Grof CP (2013) Are sucrose transporter expression profiles linked with patterns of biomass partitioning in Sorghum phenotypes? Front Plant Sci 4:223.  https://doi.org/10.3389/fpls.2013.00223CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Lemoine R, La Camera S, Atanassova R, Dédaldéchamp F, Allario T, Pourtau N, Bonnemain J-L, Laloi M, Coutos-Thévenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M (2013) Source to sink transport and regulation by environmental factors. Front Plant Sci 4:272.  https://doi.org/10.3389/fpls.2013.00272CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Ludewig F, Flügge UI (2013) Role of metabolite transporters in source-sink carbon allocation. Front Plant Sci 4:231.  https://doi.org/10.3389/fpls.2013.00231CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Kühn C, Grof CPL (2010) Sucrose transporters of higher plants. Curr Opin Plant Biol 13(3):287–297.  https://doi.org/10.1016/j.pbi.2010.02.001CrossRefGoogle Scholar
  13. 13.
    Chen L-Q (2014) SWEET sugar transporters for phloem transport and pathogen nutrition. New Phytol 201(4):1150–1155.  https://doi.org/10.1111/nph.12445CrossRefPubMedGoogle Scholar
  14. 14.
    Shiratake K (2007) Genetics of sucrose transporter in plants. In: Genes, genomes and genomics, Global Science Books, vol 1. Global Science Books, Ltd., Ikenobe, pp 73–80Google Scholar
  15. 15.
    Boorer KJ, Loo DDF, Frommer WB, Wright EM (1996) Transport mechanism of the cloned potato H+/sucrose cotransporter StSUT1. J Biol Chem 271:25139–25144CrossRefGoogle Scholar
  16. 16.
    Gahrtz M, Stolz J, Sauer N (1994) A phloem-specific sucrose-H+ symporter from Plantago major L. supports the model of apoplastic phloem loading. Plant J 6:697–706CrossRefGoogle Scholar
  17. 17.
    Flügge U-I, Häusler RE, Ludewig F, Gierth M (2011) The role of transporters in supplying energy to plant plastids. J Exp Bot 62(7):2381–2392.  https://doi.org/10.1093/jxb/erq361CrossRefPubMedGoogle Scholar
  18. 18.
    Zimmermann P, Hirsch-Hoffman M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136:2621–2632CrossRefGoogle Scholar
  19. 19.
    Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37(5):501–506.  https://doi.org/10.1038/ng1543CrossRefPubMedGoogle Scholar
  20. 20.
    Kilian J, Whitehead D, Horak J, Wanke D, Weinl S, Batistic O, D’Angelo C, Bornberg-Bauer E, Kudla J, Harter K (2007) The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. Plant J 50(2):347–363.  https://doi.org/10.1111/j.1365-313X.2007.03052.xCrossRefPubMedGoogle Scholar
  21. 21.
    Gottwald JR, Krysan PJ, Young JC, Evert RF, Sussman MR (2000) Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. Proc Natl Acad Sci U S A 97(25):13979–13984CrossRefGoogle Scholar
  22. 22.
    Stadler R, Truernit E, Gahrtz M, Sauer N (1999) The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube growth in Arabidopsis. Plant J 19:269–278CrossRefGoogle Scholar
  23. 23.
    Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 35:207–211CrossRefGoogle Scholar
  24. 24.
    Shachar-Hill Y (2013) Metabolic network flux analysis for engineering plant systems. Curr Opin Biotechnol 24(2):247–255.  https://doi.org/10.1016/j.copbio.2013.01.004CrossRefPubMedGoogle Scholar
  25. 25.
    Sweetlove LJ, Obata T, Fernie AR (2014) Systems analysis of metabolic phenotypes: what have we learnt? Trends Plant Sci 19(4):222–230.  https://doi.org/10.1016/j.tplants.2013.09.005CrossRefPubMedGoogle Scholar
  26. 26.
    Baghalian K, Hajirezaei M-R, Schreiber F (2014) Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering. Plant Cell Online 26(10):3847–3866.  https://doi.org/10.1105/tpc.114.130328CrossRefGoogle Scholar
  27. 27.
    Poolman MG, Assmus HE, Fell DA (2004) Applications of metabolic modelling to plant metabolism. J Exp Bot 55(400):1177–1186.  https://doi.org/10.1093/jxb/erh090CrossRefPubMedGoogle Scholar
  28. 28.
    Arnold A, Nikoloski Z (2014) Bottom-up metabolic reconstruction of Arabidopsis and its application to determining the metabolic costs of enzyme production. Plant Physiol 165(3):1380–1391.  https://doi.org/10.1104/pp.114.235358CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    de Oliveira Dal’Molin CG, Quek L-E, Palfreyman RW, Brumbley SM, Nielsen LK (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152(2):579–589.  https://doi.org/10.1104/pp.109.148817CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Vanrolleghem PA, Heijnen J (1995) Metabolic network modelling: improving predictions of microbial metabolism by maximal incorporation of knowledge on biochemical reaction stoichiometry. In: Proceedings 9th Forum for Applied Biotechnology, Med. Fac. Landbouww. Univ. Gent, 60/4a, 1933–1940Google Scholar
  31. 31.
    Thiele I, Palsson BO (2010) A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protoc 5(1):93–121.  https://doi.org/10.1038/nprot.2009.203CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Stitt M, Sulpice R, Keurentjes J (2010) Metabolic networks: how to identify key components in the regulation of metabolism and growth. Plant Physiol 152(2):428–444.  https://doi.org/10.1104/pp.109.150821CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Mintz-Oron S, Meir S, Malitsky S, Ruppin E, Aharoni A, Shlomi T (2012) Reconstruction of Arabidopsis metabolic network models accounting for subcellular compartmentalization and tissue-specificity. Proc Natl Acad Sci 109(1):339–344.  https://doi.org/10.1073/pnas.1100358109CrossRefPubMedGoogle Scholar
  34. 34.
    Poolman MG, Miguet L, Sweetlove LJ, Fell DA (2009) A genome-scale metabolic model of Arabidopsis and some of its properties. Plant Physiol 151(3):1570–1581.  https://doi.org/10.1104/pp.109.141267CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Cheung CYM, Ratcliffe RG, Sweetlove LJ (2015) A method of accounting for enzyme costs in flux balance analysis reveals alternative pathways and metabolite stores in an illuminated Arabidopsis leaf. Plant Physiol 169(3):1671–1682.  https://doi.org/10.1104/pp.15.00880CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gomes De Oliveira Dal’molin C, Quek L-E, Saa PA, Nielsen LK (2015) A multi-tissue genome-scale metabolic modelling framework for the analysis of whole plant systems. Front Plant Sci 6:4.  https://doi.org/10.3389/fpls.2015.00004CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Grafahrend-Belau E, Junker A, Eschenröder A, Müller J, Schreiber F, Junker BH (2013) Multiscale metabolic modeling: dynamic flux balance analysis on a whole-plant scale. Plant Physiol 163(2):637–647.  https://doi.org/10.1104/pp.113.224006CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Zakhartsev M, Medvedeva I, Orlov Y, Akberdin I, Krebs O, Schulze WX (2016) Metabolic model of central carbon and energy metabolisms of growing Arabidopsis thaliana in relation to sucrose translocation. BMC Plant Biol 16(1):262.  https://doi.org/10.1186/s12870-016-0868-3CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Poolman MG, Fell DA, Thomas S (2000) Modelling photosynthesis and its control. J Exp Bot 51(suppl 1):319–328.  https://doi.org/10.1093/jexbot/51.suppl_1.319CrossRefPubMedGoogle Scholar
  40. 40.
    Arnold A, Nikoloski Z (2011) A quantitative comparison of Calvin–Benson cycle models. Trends Plant Sci 16(12):676–683.  https://doi.org/10.1016/j.tplants.2011.09.004CrossRefPubMedGoogle Scholar
  41. 41.
    Sajitz-Hermstein M, Nikoloski Z (2010) A novel approach for determining environment-specific protein costs: the case of Arabidopsis thaliana. Bioinformatics 26(18):i582–i588.  https://doi.org/10.1093/bioinformatics/btq390CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Williams TCR, Miguet L, Masakapalli SK, Kruger NJ, Sweetlove LJ, Ratcliffe RG (2008) Metabolic network fluxes in heterotrophic Arabidopsis cells: stability of the flux distribution under different oxygenation conditions. Plant Physiol 148(2):704–718.  https://doi.org/10.1104/pp.108.125195CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Masakapalli SK, Le Lay P, Huddleston JE, Pollock NL, Kruger NJ, Ratcliffe RG (2010) Subcellular flux analysis of central metabolism in a heterotrophic Arabidopsis cell suspension using steady-state stable isotope labeling. Plant Physiol 152(2):602–619.  https://doi.org/10.1104/pp.109.151316CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Piques M, Schulze WX, Höhne M, Usadel B, Gibon Y, Rohwer J, Stitt M (2009) Ribosome and transcript copy numbers, polysome occupancy and enzyme dynamics in Arabidopsis. Mol Syst Biol 5(1).  https://doi.org/10.1038/msb.2009.68
  45. 45.
    Lee CP, Gu Q, Xiong Y, Mitchell RA, Ernster L (1996) P/O ratios reassessed: mitochondrial P/O ratios consistently exceed 1.5 with succinate and 2.5 with NAD-linked substrates. FASEB J 10(2):345–350CrossRefGoogle Scholar
  46. 46.
    Hoefnagel MHN, Atkin OK, Wiskich JT (1998) Interdependence between chloroplasts and mitochondria in the light and the dark. Biochim Biophys Acta 1366(3):235–255.  https://doi.org/10.1016/S0005-2728(98)00126-1CrossRefGoogle Scholar
  47. 47.
    Pänke O, Rumberg B (1997) Energy and entropy balance of ATP synthesis. Biochim Biophys Acta 1322(2–3):183–194.  https://doi.org/10.1016/S0005-2728(97)00079-0CrossRefGoogle Scholar
  48. 48.
    Pänke O, Rumberg B (1999) Kinetic modeling of rotary CF0F1-ATP synthase: storage of elastic energy during energy transduction. Biochim Biophys Acta 1412(2):118–128.  https://doi.org/10.1016/S0005-2728(99)00059-6CrossRefPubMedGoogle Scholar
  49. 49.
    Badger MR (1985) Photosynthetic oxygen exchange. Annu Rev Plant Physiol 36(1):27–53.  https://doi.org/10.1146/annurev.pp.36.060185.000331CrossRefGoogle Scholar
  50. 50.
    Portis AR, McCarty RE (1976) Quantitative relationships between phosphorylation, electron flow, and internal hydrogen ion concentrations in spinach chloroplasts. J Biol Chem 251(6):1610–1617PubMedGoogle Scholar
  51. 51.
    Wolstencroft K, Owen S, Krebs O, Nguyen Q, Stanford NJ, Golebiewski M, Weidemann A, Bittkowski M, An L, Shockley D, Snoep JL, Mueller W, Goble C (2015) SEEK: a systems biology data and model management platform. BMC Syst Biol 9(1):1–12.  https://doi.org/10.1186/s12918-015-0174-yCrossRefGoogle Scholar
  52. 52.
    Zhang P, Foerster H, Tissier CP, Mueller L, Paley S, Karp PD, Rhee SY (2005) MetaCyc and AraCyc. Metabolic pathway databases for plant research. Plant Physiol 138(1):27–37.  https://doi.org/10.1104/pp.105.060376CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Karp PD, Paley SM, Krummenacker M, Latendresse M, Dale JM, Lee TJ, Kaipa P, Gilham F, Spaulding A, Popescu L, Altman T, Paulsen I, Keseler IM, Caspi R (2010) Pathway Tools version 13.0: integrated software for pathway/genome informatics and systems biology. Brief Bioinform 11(1):40–79.  https://doi.org/10.1093/bib/bbp043CrossRefPubMedGoogle Scholar
  54. 54.
    Huala E, Dickerman AW, Garcia-Hernandez M, Weems D, Reiser L, LaFond F, Hanley D, Kiphart D, Zhuang M, Huang W, Mueller LA, Bhattacharyya D, Bhaya D, Sobral BW, Beavis W, Meinke DW, Town CD, Somerville C, Rhee SY (2001) The Arabidopsis Information Resource (TAIR): a comprehensive database and web-based information retrieval, analysis, and visualization system for a model plant. Nucleic Acids Res 29(1):102–105CrossRefGoogle Scholar
  55. 55.
    Swarbreck D, Wilks C, Lamesch P, Berardini TZ, Garcia-Hernandez M, Foerster H, Li D, Meyer T, Muller R, Ploetz L, Radenbaugh A, Singh S, Swing V, Tissier C, Zhang P, Huala E (2008) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36:D1009–D1014CrossRefGoogle Scholar
  56. 56.
    Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(D1):D199–D205.  https://doi.org/10.1093/nar/gkt1076CrossRefPubMedGoogle Scholar
  57. 57.
    Hastings J, de Matos P, Dekker A, Ennis M, Harsha B, Kale N, Muthukrishnan V, Owen G, Turner S, Williams M, Steinbeck C (2013) The ChEBI reference database and ontology for biologically relevant chemistry: enhancements for 2013. Nucleic Acids Res 41(D1):D456–D463.  https://doi.org/10.1093/nar/gks1146CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Centre for Integrative GeneticsNorwegian University of Life SciencesÅsNorway
  2. 2.Plant Systems BiologyUniversity of HohenheimStuttgartGermany

Personalised recommendations