Advertisement

Phloem pp 339-344 | Cite as

Modeling the Hydraulic Conductivity of Phloem Sieve Elements

  • Kaare H. JensenEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2014)

Abstract

Phloem transport of photoassimilates affects nearly all aspects of plant life, from growth to reproduction. This chapter summarizes mathematical techniques to quantify the impact of sieve element anatomy on phloem transport processes.

Key words

Hydraulic resistance Hydraulic conductivity Fluid mechanics Sieve plate 

Notes

Acknowledgments

This work was supported by research grants (13166 and 17587) from VILLUM FONDEN.

References

  1. 1.
    Stroock AD, Pagay VV, Zwieniecki MA, Holbrook NM (2014) The physicochemical hydrodynamics of vascular plants. Annu Rev Fluid Mech 46:615–642CrossRefGoogle Scholar
  2. 2.
    Jensen KH, Berg-Sørensen K, Bruus H, Holbrook NM, Liesche J, Schulz A et al (2016) Sap flow and sugar transport in plants. Rev Mod Phys 88:035007CrossRefGoogle Scholar
  3. 3.
    Thompson MV, Holbrook NM (2003) Application of a single-solute non-steady-state phloem model to the study of long-distance assimilate transport. J Theor Biol 220:419–455CrossRefGoogle Scholar
  4. 4.
    Ronellenfitsch H, Liesche J, Jensen KH, Holbrook NM, Schulz A, Katifori E (2015) Scaling of phloem structure and optimality of photoassimilate transport in conifer needles. Proc Roy Soc Lond B Biol Sci 282:20141863CrossRefGoogle Scholar
  5. 5.
    Carvalho MR, Turgeon R, Owens T, Niklas KJ (2017) The hydraulic architecture of ginkgo leaves. Am J Bot 104:1285–1298CrossRefGoogle Scholar
  6. 6.
    Carvalho MR, Turgeon R, Owens T, Niklas KJ (2017) The scaling of the hydraulic architecture in poplar leaves. New Phytol 214:145–157CrossRefGoogle Scholar
  7. 7.
    Bruus H (2008) Theoretical microfluidics. Oxford University Press, OxfordGoogle Scholar
  8. 8.
    Tabeling P (2005) Introduction to microfluidics. Oxford University Press, OxfordGoogle Scholar
  9. 9.
    Kirby BJ (2010) Micro-and nanoscale fluid mechanics: transport in microfluidic devices. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  10. 10.
    Happel J, Brenner H (2012) Low Reynolds number hydrodynamics: with special applications to particulate media. Springer, BerlinGoogle Scholar
  11. 11.
    Prandtl L, Tietjens OG (1934) Applied hydro-and aerodynamics. Dover, New YorkGoogle Scholar
  12. 12.
    Darrigol O (2005) Worlds of flow: a history of hydrodynamics from the Bernoullis to Prandtl. Oxford University Press, OxfordGoogle Scholar
  13. 13.
    Jensen KH, Mullendore DL, Holbrook NM, Bohr T, Knoblauch M, Bruus H (2012) Modeling the hydrodynamics of phloem sieve plates. Front Plant Sci 3:151CrossRefGoogle Scholar
  14. 14.
    Jensen KH, Valente AX, Stone HA (2014) Flow rate through microfilters: influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia. Phys Fluids 26:052004CrossRefGoogle Scholar
  15. 15.
    Bird RB, Stewart WE, Lightfoot EN (2004) Transport phenomena. John Wiley & Sons, New YorkGoogle Scholar
  16. 16.
    Duprat C, Stone HA (eds) (2015) Fluid-structure interactions in low-Reynolds-number flows. Royal Society of Chemistry, LondonGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsTechnical University of DenmarkKgs. LyngbyDenmark

Personalised recommendations