Phloem pp 311-336 | Cite as

Methods for Assessing the Role of Phloem Transport in Plant Stress Responses

  • Sanna SevantoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2014)


Delivery of carbohydrates to tissues that need them under stress is important for plant defenses and survival. Yet, little is known on how phloem function is altered under stress, and how that influences plant responses to stress. This is because phloem is a challenging tissue to study. It consists of cells of various types with soft cell walls, and the cells show strong wounding reactions to protect their integrity, making both imaging and functional studies challenging. This chapter summarizes theories on how phloem transport is affected by stress and presents methods that have been used to gain the current knowledge. These techniques range from tracer studies and imaging to carbon balance and anatomical analyses. Advances in these techniques in the recent years have considerably increased our ability to investigate phloem function, and application of the new methods on plant stress studies will help provide a more comprehensive picture of phloem function and its limitations under stress.

Key words

Carbon balance Drought Hydraulic conductivity Isotope NMR PET Pathogen Phloem Stress Stem diameter variation Tracer 


  1. 1.
    Smith WK, Young DR, Carter GA, Hadley JL, McNaughton GM (1984) Autumn stomatal closure in six conifer species of central Rocky Mountains. Oecologia 63:237–242PubMedCrossRefGoogle Scholar
  2. 2.
    Tyree MT, Sperry JS (1988) Do woody plants operate near the point of catastrophic xylem dysfunction caused by dynamic water stress?: answers from a model. Plant Physiol 88:574–580PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Wilkinson S, Clephan AL, Davies WJ (2001) Rapid low temperature-induced stomatal closure occurs in cold-tolerant Commelina communis leaves but not in cold-sensitive tobacco leaves via a mechanism that involves apoplastic calcium but not abscisic acid. Plant Physiol 126:1566–1578PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Kerchev PI, Fenton B, Foyer CH, Hancock RD (2012) Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signaling pathways. Plant Cell Environ 35:441–453PubMedCrossRefGoogle Scholar
  5. 5.
    Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A (2015) Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Sci Rep 5:12449PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Martin-StPaul N, Delzon S, Cochard H (2017) Plant resistance to drought depends on timely stomatal closure. Ecol Lett 20:1437–1447PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    Roman DT, Novick KA, Brzostek ER, Dragoni D, Rahman F, Phillips RP (2015) The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia 179:641–654PubMedCrossRefGoogle Scholar
  8. 8.
    McDowell N, Pockman WT, Allen CD, Breshears DD, Cobb N, Kolb T, Plaut J, Sperry J, West A, Williams DG, Yepez EA (2008) Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol 178:719–739PubMedCrossRefGoogle Scholar
  9. 9.
    Bhaskar R, Ackerly DD (2006) Ecological relevance of minimum seasonal water potentials. Physiol Plant 127:353–359CrossRefGoogle Scholar
  10. 10.
    Domec JC, Warren JM, Meinzer FC, Brooks JR, Coulombe R (2004) Native root xylem embolism and stomatal closure in stands of Douglas-fir and ponderosa pine: mitigation by hydraulic redistribution. Oecologia 141:7–16PubMedCrossRefGoogle Scholar
  11. 11.
    Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR (2009) Xylem hydraulic safety margins in woody plants; coordination of stomatal control of xylem tension with hydraulic capacitance. Funct Ecol 23:922–930CrossRefGoogle Scholar
  12. 12.
    McCulloh KA, Woodruff DR (2012) Linking stomatal sensitivity and whole-tree hydraulic architecture. Tree Physiol 32:369–372PubMedCrossRefGoogle Scholar
  13. 13.
    Sala A, Piper F, Hoch G (2010) Physiological mechanisms of drought-induced tree mortality are far from being resolved. New Phytol 186:274–281PubMedCrossRefGoogle Scholar
  14. 14.
    Sala A, Woodruff DR, Meinzer FC (2012) Carbon dynamics in trees: feast or famine? Tree Physiol 32:764–775PubMedCrossRefGoogle Scholar
  15. 15.
    Savage JA, Clearwater MJ, Haines DF, Klein T, Mencuccini M, Sevanto S, Turgeon R, Zhang C (2016) Allocation, stress tolerance and carbon transport in plants: How does phloem physiology affect plant ecology? Plant Cell Environ 39:709–725PubMedCrossRefGoogle Scholar
  16. 16.
    Hölttä T, Mencuccini M, Nikinmaa E (2009) Linking phloem function to structure: analysis with a coupled xylem – phloem transport model. J Theor Biol 259:325–337CrossRefGoogle Scholar
  17. 17.
    Schultz JC, Appel HM, Ferrieri AP, Arnold TM (2013) Flexible resource allocation during plant defense responses. Front Plant Sci 4:article 324PubMedCrossRefGoogle Scholar
  18. 18.
    Nikinmaa E, Hölttä T, Hari P, Kolari P, Mäkelä A, Sevanto S, Vesala T (2013) Assimilate transport in phloem sets conditions for leaf gas exchange. Plant Cell Environ 36:655–669PubMedCrossRefGoogle Scholar
  19. 19.
    Hartmann H, Ziegler W, Trumbore S (2013b) Lethal drought leads to reduction in nonstructural carbohydrates in Norway spruce tree roots but not in the canopy. Funct Ecol 27:413–427CrossRefGoogle Scholar
  20. 20.
    Woodruff DR (2014) The impacts of water stress on phloem transport in Douglas-fir trees. Tree Physiol 34:5–14PubMedCrossRefGoogle Scholar
  21. 21.
    Sevanto S, McDowell NG, Dickman LT, Pangle R, Pockman WT (2014) How do trees die? A test of the hydraulic failure and carbon starvation hypotheses. Plant Cell Environ 37:153–161PubMedCrossRefGoogle Scholar
  22. 22.
    Garcia-Forner N, Sala A, Biel C, Save R, Martinez-Vilalta J (2016) Individual traits as determinants of time to death under extreme drought in Pinus sylvestris L. Tree Physiol 36:1196–1209PubMedCrossRefGoogle Scholar
  23. 23.
    van Bel AJE, Gaupels F (2004) Pathogen-induced resistance and alarm signals in the phloem. Mol Plant Pathol 5:465–504. Scholar
  24. 24.
    Walling LL (2008) Avoiding effective defenses: strategies employed by phloem-feeding insects. Plant Physiol 146:859–866PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Knoblauch M, Froelich DR, Pickard WF, Peters WS (2014) SEORious business: structural proteins in sieve tubes and their involvement in sieve element occlusion. J Exp Bot 65:1879–1893CrossRefGoogle Scholar
  26. 26.
    Kennedy JS, Mittler TE (1953) A method of obtaining phloem sap via the mouth-parts of aphids. Nature 171:528CrossRefGoogle Scholar
  27. 27.
    Minchin PEH, Thorpe MR (1983) A rate of cooling response in phloem translocation. J Exp Bot 34:529–536CrossRefGoogle Scholar
  28. 28.
    Savage JA, Zwieniecki MA, Holbrook NM (2013) Phloem transport velocity varies over time and among vascular bundles during early cucumber seedling development. Plant Physiol 163:1409–1418PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Jensen KH, Valente A, Stone HA (2014) Flow rate through microfilters: influence of the pore size distribution, hydrodynamic interactions, wall slip, and inertia. Phys Fluids 26:052004CrossRefGoogle Scholar
  30. 30.
    Knoblauch M, Knoblauch J, Mullendore DL, Savage JA, Babst BA, Beecher SD, Dodgen AC, Jensen KH, Holbrook NM (2016) Testing the Münch hypothesis of long distance phloem transport in plants. elife 5:e15341PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Bowes BG (1997) A colour atlas of plant structure. Manson Publishing Ltd, London, p 192Google Scholar
  32. 32.
    Schulz A (1990) Conifers. In: Behnke HD, Sjolund RD (eds) Sieve elements. Springer, Berlin, pp 63–88CrossRefGoogle Scholar
  33. 33.
    Epron D, Cabral OMR, Laclau J-P et al (2016) In situ 13CO2 pulse labelling of field-grown eucalypt trees revealed the effects of potassium nutrition and throughfall exclusion on phloem transport of photosynthetic carbon. Tree Physiol 36:6–21CrossRefGoogle Scholar
  34. 34.
    Stanfield RC, Hacke UG, Laur J (2017) Are phloem sieve tubes leaky conduits supported by numerous aquaporins? Am J Bot 104:719–732CrossRefGoogle Scholar
  35. 35.
    Furze ME, Trumbore S, Hartmann H (2018) Detours on the phloem sugar highway: stem carbon storage and remobilization. Curr Opin Plant Biol 43:89–95PubMedCrossRefGoogle Scholar
  36. 36.
    Sevanto S (2018) Drought impacts on phloem transport. Curr Opin Plant Biol 43:76–81PubMedCrossRefGoogle Scholar
  37. 37.
    Pausch J, Kuzyakov Y (2018) Carbon input by roots into the soil: quantification of rhizodeposition from root to ecosystem scale. Glob Change Biol 24:1–12CrossRefGoogle Scholar
  38. 38.
    Rillig MC (2004) Arbuscular mycorrhizae and terrestrial ecosystem processes. Ecol Lett 7:740–754CrossRefGoogle Scholar
  39. 39.
    Kozlowski TT (1997) Responses of woody plants to flooding and salinity. Tree Physiol Monograph 1:1–28Google Scholar
  40. 40.
    Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures; towards genetic engineering for stress tolerance. Planta 218:1–14PubMedCrossRefGoogle Scholar
  41. 41.
    Plaut Z, Grava A, Yehezkel C, Matan E (2004) How do salinity and water stress affect transport of water, assimilates and ions to tomato fruits? Physiol Plant 122:429–442CrossRefGoogle Scholar
  42. 42.
    Knoblauch M, Peters WS (2016) Think outside the sieve element. Plant Cell Environ 39:707–708PubMedCrossRefGoogle Scholar
  43. 43.
    Lemoine R, La Camera S, Atanassova R, Dedaldechamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thevenot P, Maurousset L et al (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4:272. Scholar
  44. 44.
    McDowell NG, Sevanto S (2010) The mechanisms of carbon starvation: how, when, or does it even occur at all? New Phytol 186:264–266PubMedCrossRefGoogle Scholar
  45. 45.
    Sevanto S (2014) Phloem transport and drought. J Exp Bot 65:1751–1759PubMedCrossRefGoogle Scholar
  46. 46.
    Thompson MW, Holbrook NM (2003) Scaling phloem transport: Water potential equilibrium and osmoregulatory flow. Plant Cell Environ 26:1561–1577CrossRefGoogle Scholar
  47. 47.
    Grange RI, Peel AJ (1978) Evidence for solution flow in the phloem of willow. Planta 138:15–23PubMedCrossRefGoogle Scholar
  48. 48.
    Smith JAC, Milburn JA (1980) Osmoregulation and the control of phloem-sap composition in Ricinus communis L. Planta 148:28–34PubMedCrossRefGoogle Scholar
  49. 49.
    Xu Q, Chen S, Yunjuan R, Chen S, Liesche J (2018) Regulation of sucrose transporters and phloem loading in response to environmental cues. Plant Physiol 176:930–945CrossRefGoogle Scholar
  50. 50.
    Lewis DH (1984) Occurrence and distribution of storage carbohydrates in vascular plants. In: Lewis DH (ed) Storage carbohydrates in vascular plants. Distribution, physiology and metabolism. Cambridge University Press, Cambridge UK, pp 1–52Google Scholar
  51. 51.
    Morison KR (2002) Viscosity equations for sucrose solutions: old and new. In: Proceedings of the Ninth APCChE Congress and CHEMECA Paper # 984Google Scholar
  52. 52.
    Sevanto S, Ryan MG, Dickman LT, Derome D, Patera A, Defraeye T, Pangle RE, Hudson PJ, Pockman WT (2018) Is desiccation tolerance and avoidance reflected in xylem and phloem anatomy of two co-existing arid-zone coniferous trees? Plant Cell Environ 41:1551–1564PubMedCrossRefGoogle Scholar
  53. 53.
    Dannoura M, Epron D, Desalme D, Massonnet C, Tsuji S, Plain C, Priault P, Gerant D (2018) The impact of prolonged drought on phloem anatomy and phloem transport in young beech. Tree Physiol 39(2):201–210. Scholar
  54. 54.
    Chaumont F, Tyerman SD (2014) Aquaporins: highly regulated channels controlling plant water relations. Plant Physiol 164:1600–1618PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Maurel C, Verdoucq L, Rodrigues O (2016) Aquaporins and plant transpiration. Plant Cell Environ 39:2580–2587PubMedCrossRefGoogle Scholar
  56. 56.
    Milne RJ, Perroux JM, Rae AL, Teinders A, Ward JM, Offler CE, Patrick JW, Grof CPL (2017) Sucrose transporter localization and function in phloem unloading in developing stems. Plant Physiol 173:1330–1341CrossRefGoogle Scholar
  57. 57.
    Lalonde S, Boles E, Hellmann H, Barker L, Patrick JW, Frommer WB, Ward JM (1999) The dual function of sugar carriers: transport and sugar sensing. Plant Cell 11:707–726PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Lang A (1979) A relay mechanism for phloem translocation. Ann Bot 44:141–145CrossRefGoogle Scholar
  59. 59.
    Thompson, M.V., Zwieniecki, M.A., 2005. The role of potassium in long distance transport in plants. In: Holbrook, N.M., M.A. Zwieniecki, Vascular transport in plants, Elsevier Academic Press CambridgeGoogle Scholar
  60. 60.
    Dickman LT, McDowell NG, Sevanto S, Pangle RE, Pockman WT (2014) Carbohydrate dynamics and mortality in a piñon-juniper woodland under three future precipitation scenarios. Plant Cell Environ 38:729–739PubMedCrossRefGoogle Scholar
  61. 61.
    Nikam PS, Ansari HR, Hasan M (2000) Density and viscosity studies of glucose and fructose solutions in aqueous and 0.5 mol dm3 aqueous NH4Cl. J Mol Liq 87:97–105CrossRefGoogle Scholar
  62. 62.
    Roberts AG, Santa Cruz S, Roberts IM, Prior DAM, Turgeon R, Oparka KJ (1997) Phloem unloading in sink leaves of Nicotiana benthamiana: comparison of a fluorescent solute with a fluorescent virus. Plant Cell 9:1381–1396PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Helfter C, Shephard JD, Martinez-Vilalta J, Mencuccini M, Hand DP (2007) A noninvasive optical system for measurements of xylem and phloem sap flow in woody plants of small stem size. Tree Physiol 27:169–179PubMedCrossRefGoogle Scholar
  64. 64.
    Froelich DF, Mullendore DM, Jensen KH, Ross-Elliott TJ, Anstead JA, Thompson GA, Pelissier H, Knoblauch M (2011) Phloem ultrastructure and pressure flow: sieve-element-occlusion-related agglomerations do not affect translocation. Plant Cell 23:4428–4445PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Wang Z, Xie X, Zhao J, Liu X, Feng W, White JC, Xing B (2012) Xylem- and phloem-based transport of CuO nanoparticles in maize (Zea mays L.). Environ Sci Technol 46:4434–4441PubMedCrossRefGoogle Scholar
  66. 66.
    Zhai G, Walters KS, Peate DW, Alvarez PJJ, Schnoor JL (2014) Transport of gold nanoparticles through plasmodesmata and precipitation of gold ions in woody poplar. Environ Sci Technol Lett 1(2):146–151PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Perez-de-Lugue A (2017) Interaction of nanomaterials with plants: What do we need for real applications in agriculture. Front Environ Sci.
  68. 68.
    Windt CW, Vergeldt FJ, de Jager PA, van As H (2006) MRI of long-distance water transport: a comparison of the phloem and xylem flow characteristics and dynamics in poplar, castor bean, tomato and tobacco. Plant Cell Environ 29:1715–1729CrossRefGoogle Scholar
  69. 69.
    Hubeau M, Steppe K (2015) Plant-PET scans: In vivo mapping of xylem and phloem functioning. Trends Plant Sci 20:676–685CrossRefGoogle Scholar
  70. 70.
    Deborde C, Moing A, Roch L, Jacob D, Rolin D, Giraudeau P (2017) Plant metabolism as studies by NMR spectroscopy. Prog Nucl Magn Reson Spectrosc 102-103:61–97PubMedCrossRefGoogle Scholar
  71. 71.
    Knoblauch M, Peters WS (2010) Münch, morphology, microfluidics – our structural problem with the phloem. Plant Cell Environ 33:1439–1452Google Scholar
  72. 72.
    De Schepper V, De Swaef T, Bauweraerts I, Steppe K (2013b) Phloem transport: a review of mechanisms and controls. J Exp Bot 64:4839–4850PubMedCrossRefGoogle Scholar
  73. 73.
    Mencuccini M, Hölttä T (2010) The significance of phloem transport for the speed with which canopy photosynthesis and belowground respiration are linked. New Phytol 185:189–203PubMedCrossRefGoogle Scholar
  74. 74.
    Hartmann H, Ziegler W, Kolle O, Trumbore S (2013a) Thirst beast hunger –declining hydration during drought prevents carbon starvation in Norway spruce saplings. New Phytol 200:340–349PubMedCrossRefGoogle Scholar
  75. 75.
    Gressler A, Treydte K (2016) The fate and age of carbon –insights into the storage and remobilization dynamics in trees. New Phytol 209:1338–1340CrossRefGoogle Scholar
  76. 76.
    Ernst AM, Jekat SB, Zielonkla S, Müller B, Neumann U, Rüping B et al (2012a) Sieve element occlusion (SEO) genes encode structural phloem proteins involved in wound sealing of the phloem. Proc Natl Acad Sci U S A 109:11084–11085CrossRefGoogle Scholar
  77. 77.
    Thorpe MR, Minchin PEH, Dye EA (1979) Oxygen effects on phloem loading. Plant Sci Lett 15:345–350CrossRefGoogle Scholar
  78. 78.
    Kölling K, Müller A, Flütsch P, Zeeman SC (2013) A device for single leaf labelling with CO2 isotopes to study carbon allocation and partitioning in Arabidopsis thaliana. Plant Methods 9:45PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Werner C, Schnydeer H, Cuntz M, Keitel C, Zeeman MJ, Dawson TE, Badeck F-W, Brugnoli E, Ghashghaie J, Grams TEE, Kayler ZE, Lakatos M, Lee X, Maguas C, Ogee J, Rascher KG, Siegwolf RTW, Unger S, Welker J, Wingate L, Gessler A (2012) Progress and challenges in using stable isotopes to trace plant carbon and water relations across scales. Biogeosciences 9:3083–3111CrossRefGoogle Scholar
  80. 80.
    Steinmann K, Siegwolf RTW, Saurer M, Körner C (2004) Carbon fluxes to the soil in a mature temperate forest assessed by 13C isotope tracing. Oecologia 141:489–501PubMedCrossRefGoogle Scholar
  81. 81.
    Howarth WR, Pregitzer KS, Paul EA (1994) 14C allocation in tree soil systems. Tree Physiol 14:1163–1176CrossRefGoogle Scholar
  82. 82.
    Mikan CJ, Zak DR, Kubiske ME, Pregitzer KS (2000) Combined effects of atmospheric CO2 and N availability on the belowground carbon and nitrogen dynamics of aspen mesocosms. Oecologia 124:432–445PubMedCrossRefGoogle Scholar
  83. 83.
    Johnson D, Leake JR, Ostle N, Ineson P, Read DJ (2002) In situ13CO2 pulse labelling of upland grassland demonstrates a rapid pathway of carbon flux from arbuscular mycorrhizal mycelia to soil. New Phytol 153:327–334CrossRefGoogle Scholar
  84. 84.
    Högberg P, Högberg MN, Göttlicher SG, Betson NR, Keel SG, Metcalfe DB, Campbell C, Schindlbacher A, Hurry V, Lundmark T et al (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177:220–228Google Scholar
  85. 85.
    Pickard WF, Minchin PEH (1990) The transient inhibition of phloem translocation in Phaseolus vulgaris by abrupt temperature drops, vibration and electric shock. J Exp Bot 41:1361–1369CrossRefGoogle Scholar
  86. 86.
    Pate J, Arthur D (1998) δ13C analysis of phloem sap carbon: novel means of evaluating seasonal water stress and interpreting carbon isotope signatures of foliage and trunk wood of Eucalyptus globulus. Oecologia 117:301–311PubMedCrossRefGoogle Scholar
  87. 87.
    Keitel C, Adams MA, Holst T, Matzarakis A, Mayer H, Rennenberg H, Gessler A (2003) Carbon and oxygen isotope composition of organic compounds in the phloem sap provides a short-term measure for stomatal conductance of European beech (Fagus sylvatica L.). Plant Cell Environ 26:1157–1168CrossRefGoogle Scholar
  88. 88.
    Barbour MM, Hunt JE, Dungan RJ, Turnbull MH, Brailsford GW, Farquhar GD, Whitehead D (2005) Variation in the degree of coupling between delta C-13 of phloem sap and ecosystem respiration in two mature Nothofagus forests. New Phytol 166:497–512PubMedCrossRefGoogle Scholar
  89. 89.
    Ruehr NK, Offermann CA, Gessler A, Winkler JB, Ferrio JP, Buchmann N, Barnard RL (2009) Drought effects on allocation of recent carbon: from beech leaves to soil CO2 efflux. New Phytol 184:950–961PubMedCrossRefGoogle Scholar
  90. 90.
    Hommel R, Siegwolf R, Zavadlav S, Arend M, Schaub M, Galiano L, Haeni M, Kayler ZE, Gessler A (2016) Impact of interspecific competition and drought on the allocation of new assimilates in trees. Plant Biol 18:785–196PubMedCrossRefGoogle Scholar
  91. 91.
    Minchin PEH, Thorpe MR (1987) Measurement of unloading and reloading of photo-assimilate within the stem of bean. J Exp Bot 38:211–220CrossRefGoogle Scholar
  92. 92.
    McQueen JC, Minchin PEH, Thorpe MR, Silvester WB (2005) Short-term storage of carbohydrate in stem tissue of apple (Malus domestica), a woody perennial: evidence for involvement of the apoplast. Funct Plant Biol 32:1027–1031CrossRefGoogle Scholar
  93. 93.
    Malone MW, Yoder J, Hunter JF, Espy MA, Dickman LT, Nelson RO, Vogel SC, Sandin H, Sevanto S (2016) In vivo observation of tree drought response with low-field NMR and neutron imaging. Front Plant Sci 7:564. Scholar
  94. 94.
    Zarebanadkouki M, Kim YX, Carminati A (2013) Where do roots take up water? Neutron radiography of water flow into the roots of transpiring plants growing in soil. New Phytol 199:1034–1044PubMedCrossRefGoogle Scholar
  95. 95.
    Nelson RO, Vogel SC, Hunter J, Watkins EB, Losko AS, Tremsin AS, Borges NP, Cutler TE, Dickman LT, Espy M, Gautier C, Madden AC, Majewski J, Malone MW, Mayo DR, McClellan KJ, Montgomery D, Mosby S, Nelson AT, Ramos K, Schirato RC, Schroeder K, Sevanto S, Swift AL, Vo L, Williamson T, Winch N (2018) Neutron imaging at LANSCE –from cold to ultrafast. J Imag 4:45CrossRefGoogle Scholar
  96. 96.
    Knoblauch M, Vendrell M, de Leau E, Paterlini A, Knox K, Ross-Elliott TJ, Reinders A, Brockman SA, Ward J, Oparka K (2015) Multisectral phloem-mobile probes –properties and applications. Plant Physiol 167:1211–1220PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Truernit E (2014) Phloem imaging. J Exp Bot 65:1681–1688CrossRefGoogle Scholar
  98. 98.
    Knoblauch M, van Bell AJE (1998) Sieve tubes in action. Plant Cell 10:35–50PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Marion D (2013) An introduction to biological NMR spectroscopy. Mol Cell Proteomics 12:3006–3025PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Windt CW, Soltner H, van Dusschoten D, Blümler P (2011) A portable Halbach magnet that can be opened and closed without force: the NMR-cuff. JMagnReson 208:27–33Google Scholar
  101. 101.
    Kimura T, Geya Y, Terada Y, Kose K, Haishi T, Gemma H et al (2011) Development of a mobile magnetic resonance imaging system for outdoor tree measurements. RevSciInstrum 82:053704Google Scholar
  102. 102.
    Jones M, Aptaker PS, Cox J, Gardiner B, McDonald P (2012) A transportable magnetic resonance imaging system for in situ measurements of living trees: the tree hugger. J Magn Reson 218:133–140PubMedCrossRefGoogle Scholar
  103. 103.
    Yoder J, Espy MA, Malone MW, Sevanto S (2014) Low-field NMR for the in vivo study of water content in trees. Rev Sci Instrum 85:095110–095110-8PubMedCrossRefGoogle Scholar
  104. 104.
    Homan NM, Windt CW, Vergeldt FJ, Gerkema E, van As H (2007) 0.7 and 3T MRI and sap flow in intact trees: xylem and phloem in action. Appl Magn Reson 32:157–170CrossRefGoogle Scholar
  105. 105.
    Ilvonen K, Palva L, Perämäki M, Joensuu R, Sepponen R (2001) MRI-based D2O/H2O –contrast methods to study water flow and distribution in heterogenous systems: demonstration in wood xylem. J Magn Reson 149:36–44CrossRefGoogle Scholar
  106. 106.
    Bourgis F, Kilaru A, Cao X, Ngando-Ebongue G-F, Drira N, Ohlrogge JB, Arondel V (2011) Comparative transcriptome and metabolite analysis of oil palm and date palm mesocarp that differ dramatically in carbon partitioning. Proc Natl Acad Sci U S A 108:12527–12532PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Brodribb TJ, Skelton RP, McAdam SA, Bienaime D, Lucani CJ, Marmottant P (2016) Visual quantification of embolism reveals leaf vulnerability to hydraulic failure. New Phytol 209:1403–1409PubMedCrossRefGoogle Scholar
  108. 108.
    Ohya T, Tanoi K, Hamada Y, Okabe H, Rai H, Hojo J, Suzuki K, Nakanishi TM (2008) An analysis of long-distance water transport in the soybean stem using H215O. Plant Cell Physiol 49:718–729PubMedCrossRefGoogle Scholar
  109. 109.
    Mori S, Kiyomiya S, Nakanishi H, Ishioka NS, Watanabe S, Osa A et al (2000) Visualization of 15 O-water flow in tomato and rice in the light and dark using a positron-emitting tracer imaging system (PETIS). Soil Sci Plant Nutr 46:975–979CrossRefGoogle Scholar
  110. 110.
    Kiyomiya S, Nakanishi H, Uchida H, Nishiyama S, Tsukada H, Ishioka NS, Watanabe S, Osa A, Mizuniwa C, Ito T, Matsuhashi S, Hashimoto S, Sekine T, Tsuji A, Mori S (2001) Light activates H2 15O flow in rice: detailed monitoring using a positron-emitting tracer imaging systems (PETIS). Physiol Plant 113:359–367PubMedCrossRefGoogle Scholar
  111. 111.
    Nakanishi H, Bughio N, Matsuhashi S, Ishioka NS, Uchida H, Tsuji A, Osa A, Sekine T, Kume T, Mori S (1999) Visualizing real time [11c] methionine translocation in Fe-sufficient and Fe-deficient barley using a positron emitting tracer imaging system (PETIS). J Exp Bot 50:637–643CrossRefGoogle Scholar
  112. 112.
    Meldau S, Woldemariam MG, Fatangare A, Svatos A, Galis I (2015) Using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) to study carbon allocation in plants after herbivore attack. BMC Res Notes 8:45PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    De Schepper V, Buhler J, Thorpe M, Roeb G, Huber G, van Dusschoten D, Jahnke S, Steppe K (2013a) 11C-PET imaging reveals transport dynamics and sectorial plasticity of oak phloem after girdling. Front Plant Sci 4:200PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Jahnke S, Menzel MI, Van Dusschoten D, Roeb GW, Buhler J, Minwuyelet S, Blumer P, Temperton VM, Hombach T, Streun M, Beer S, Khodaverdi M, Ziemons K, Coenen HH, Schurr U (2009) Combined MRI-PET dissects dynamic changes in plant structures and functions. Plant J 59:634–644PubMedCrossRefGoogle Scholar
  115. 115.
    Hunt S (2003) Measurements of photosynthesis and respiration in plants. Physiol Plant 117:314–325PubMedCrossRefGoogle Scholar
  116. 116.
    Quentin AG, Pinkard EA, Ryan MG, Tissue DT, Baggett LS, Adams HD, Maillard P, Marchand J, Landhäusser SM, Lacointe A, Gibon Y, Anderegg WR, Asao S, Atkin OK, Bonhomme M, Claye C, Chow PS, Clement-Vidal A, Davies NW, Dickman LT, Dumbur R, ellsworth DS, Falk K, Galiano L, Grünzweig JM, Hartmann H, Hoch G, Hood S, Jones JE, Koike T, Kuhlmann I, Lloret F, Maestro M, Mansfield SD, Martinez-Vilalta J, Maucourt M, McDowell NG, Moing A, Muller B, Nebauer SG, Niinemets U, Palacio S, Piper F, Raveh E, Richter A, Rolland G, Rosas T, Saint Joanis B, Sala A, Smith RA, Sterck F, Stinziano JR, Tobias M, Unda F, Watanabe M, Way DA, Weerasinghe LK, Wild B, Wiley E, Woodruff DR (2015) Non-structural carbohydrates in woody plants compared among laboratories. Tree Physiol 35:1146–1165PubMedPubMedCentralGoogle Scholar
  117. 117.
    Hartmann H, Trumbore S (2016) Understanding the roles of nonstructural carbohydrates in forest trees –from what we can measure to what we want to know. New Phytol 211:386–403PubMedCrossRefGoogle Scholar
  118. 118.
    Pinheiro C, Chaves MM (2010) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882PubMedCrossRefGoogle Scholar
  119. 119.
    Mitchell PJ, O’Grady AP, Tissue DT, White DA, Ottenschlaeger ML, Pinkard EA (2013) Drought response strategies define the relative contributions of hydraulic dysfunction and carbohydrate depletion during tree mortality. New Phytol 197:862–872PubMedCrossRefGoogle Scholar
  120. 120.
    Dietze MC, Sala A, Carbone MS, Czimczik CI, Mantooth JA, Richardson AD, Vargas R (2014) Nonstructural carbon in woody plants. Ann Rev Plant Biol 65:667–687CrossRefGoogle Scholar
  121. 121.
    Lacointe A (2000) Carbon allocation among tree organs: a review of basic processes and representation in functional-structural tree models. Ann For Sci 57:521–533CrossRefGoogle Scholar
  122. 122.
    Hölttä T, Vesala T, Sevanto S, Perämäki M, Nikinmaa E (2006) Modeling xylem and phloem water flows in trees according to cohesion theory and Münch pressure flow hypothesis. Trees 20:67–78CrossRefGoogle Scholar
  123. 123.
    McDowell NG, Fisher RA, Xu C, Domec JC, Hölttä T, Mackay DS, Sperry JS, Boutz A, Dickman LT, Gehres N, Limousin JM, Macalady A, Martinez-Vilalta J, Mencuccini M, Plaut JA, Ogee J, Pangle RE, Rasse DP, Ryan MG, Sevanto S, Waring RH, Williamn AP, Yepez EA, Pockman WT (2013) Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytol 200:304–321PubMedCrossRefGoogle Scholar
  124. 124.
    Klein T, Hoch G (2015) Tree carbon allocation dynamics determined using a carbon mass balance approach. New Phytol 205:147–159PubMedCrossRefGoogle Scholar
  125. 125.
    Minchin PEH, Lacointe A (2005) New understanding on phloem physiology and possible consequences for modeling long-distance carbon transport. New Phytol 166:771–779PubMedCrossRefGoogle Scholar
  126. 126.
    De Schepper V, Steppe K (2010) Development and verification of a water and sugar transport model using measured stem diameter variations. J Exp Bot 61:2083–2099PubMedCrossRefGoogle Scholar
  127. 127.
    Xu C, McDowell NG, Sevanto S, Fisher RA (2013) Our limited ability to predict vegetation dynamics under water stress. New Phytol 200:298–300PubMedCrossRefGoogle Scholar
  128. 128.
    Jensen KH, Liesche J, Bohr T, Schulz A (2012) Universality of phloem transport in seed plants. Plant Cell Environ 35:1065–1076CrossRefGoogle Scholar
  129. 129.
    Bouche PS, Delzon S, Choat B, Badel E, Brodribb TJ, Burlett R, Cochard H, Charra-Vaskou K, Lavigne B, Li S, Mayr S, Morris H, Torres-Ruiz JM, Zufferey V, Jansen S (2016) Are needles of Pinus pinaster more vulnerable to xylem embolism than branches? New insights from X-ray computed tomography. Plant Cell Environ 39:860–870PubMedCrossRefGoogle Scholar
  130. 130.
    Patera A, Carl S, Stampanoni M, Derome D, Carmelier J (2018) A non-rigid registration methods for the analysis of local deformations in the wood cell wall. Adv Struc Chem Imag 4:1CrossRefGoogle Scholar
  131. 131.
    Pfeiffer F, Weitkamp T, Bunk O, David C (2006) Phase retrieval and differential phase-contrast imaging with low-brilliance X-ray sources. Nat Phys 2:258–261. Scholar
  132. 132.
    Sevanto S, Vesala T, Perämäki M, Nikinmaa E (2002) Time lags for xylem and stem diameter variations in a Scots pine tree. Plant Cell Environ 25:1071–1077CrossRefGoogle Scholar
  133. 133.
    Sevanto S, Vesala T, Perämäki M, Nikinmaa E (2003) Sugar transport together with environmental conditions controls time lags between xylem and stem diameter changes. Plant Cell Environ 26:1257–1265CrossRefGoogle Scholar
  134. 134.
    Irvine J, Grace J (1997) Continuous measurements of water tensions in xylem of trees based on the elastic properties of wood. Planta 202:455–461CrossRefGoogle Scholar
  135. 135.
    Leikola M (1969) Influence of environmental factors on the diameter growth of forest trees: auxanometric study. Acta Forestalia Fennica 92Google Scholar
  136. 136.
    Lassoie JP (1973) Diurnal dimensional fluctuations in a Douglas-fir stem in response to tree water status. For Sci 19:251–255Google Scholar
  137. 137.
    Milne R, Ford ED, Deans JD (1983) Time lags in the water relations of Sitka spruce. For Ecol Manag 5:1–25CrossRefGoogle Scholar
  138. 138.
    Neher HV (1993) Effects of pressures inside Monterey pine trees. Trees 8:9–17CrossRefGoogle Scholar
  139. 139.
    Zweifel R, Haeni M, Buchmann N, Eugster W (2016) Are trees able to grow in periods of stem shrinkage? New Phytol 211:839–849PubMedCrossRefGoogle Scholar
  140. 140.
    De Swaef T, De Schepper V, Vandergehuchte MW, Steppe K (2015) Stem diameter variations as a versatile research too in ecophysiology. Tree Physiol 35:1047–1061PubMedCrossRefGoogle Scholar
  141. 141.
    Pfautsch S, Renard J, Tjoelker MG, Salih A (2015a) Phloem as capacitor: radial transfer of water into xylem of tree stems occurs via symplastic transport in ray parenchyma. Plant Physiol 167:963–971PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Pfautsch S, Hölttä T, Mencuccini M (2015b) Hydraulic functioning of tree stems: fusing ray anatomy, radial transfer and capacitance. Tree Physiol 35:706–722PubMedCrossRefGoogle Scholar
  143. 143.
    Mencuccini M, Hölttä T, Sevanto S, Nikinmaa E (2013) Concurrent measurements of change in the bark and xylem diameters of trees reveal a phloem-generated turgor signal. New Phytol 198:1143–1154PubMedCrossRefGoogle Scholar
  144. 144.
    Pesonen E, Mielikäinen K, Mäkinen H (2004) A new girth band for measuring stem diameter changes. Forestry 77:431–438CrossRefGoogle Scholar
  145. 145.
    Ueda M, Yoshikawa K, Okitu J (1996) Measurement of diurnal changes in stem and branch diameters using strain gauges. J For Res 1:139–142CrossRefGoogle Scholar
  146. 146.
    Fisher DB (1978) An evaluation of the Munch hypothesis for phloem transport in soybean. Planta 139:25–28PubMedCrossRefGoogle Scholar
  147. 147.
    Turgeon R (2010) The puzzle of phloem pressure. Plant Physiol 154:578–581PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Savage JA, Beecher SD, Clerx L, Gersony JT, Knoblauch J, Losada JM, Jensen KH, Knoblauch M, Holbrook NM (2017) Maintenance of carbohydrate transport in tall trees. Nat Plants 3:965–972PubMedCrossRefGoogle Scholar
  149. 149.
    Phillips RJ, Dungan SR (1993) Asymptotic analysis of flow in sieve tubes with semi-permeable walls. J Theor Biol 162:465–485CrossRefGoogle Scholar
  150. 150.
    Knoblauch J, Mullendore DL, Jensen KH, Knoblauch M (2014) Pico gauges for minimally invasive intracellular hydrostatic pressure measurements. Plant Physiol 166:1271–1279PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Sevanto S, Hölttä T, Markkanen T, Perämäki M, Nikinmaa E, Vesala T (2005) Relationships between diurnal diameter variations and environmental factors in Scots pine. Boreal Environ Res 10:447–458Google Scholar
  152. 152.
    Sevanto S, Hölttä T, Holbrook NM (2011) Effects of the hydraulic coupling between xylem and phloem on diurnal phloem diameter variation. Plant Cell Environ 34:690–703PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Earth and Environmental Sciences DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations