Advertisement

Phloem pp 145-151 | Cite as

Using 13C to Quantify Phloem Transport on Tall Plants in the Field

  • Daniel EpronEmail author
  • Masako Dannoura
  • Caroline Plain
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2014)

Abstract

The difference in time lags between a labeling pulse of 13CO2 of the foliage and the appearance of labeled C in the respiration at different locations along the stem of a tall plant is used to estimate at which velocities the isotope tracer, i.e., the labeled carbohydrates, are transported in the phloem sap. Here we describe a method for pulse-labeling tall plants in the field and subsequently tracing 13C in the respiratory efflux of CO2.

Key words

Carbon transfer Carbon allocation Laser absorption spectroscopy Phloem Pulse labeling Stable carbon isotope Stem CO2 efflux 

Notes

Acknowledgments

We thank the many colleagues from Brazil, France, Japan, and Thailand who contributed to the development and improvement of this method.

References

  1. 1.
    Epron D, Bahn M, Derrien D et al (2012) Pulse-labelling trees to study carbon allocation dynamics: a review of methods, current knowledge and future prospects. Tree Physiol 32:776–798CrossRefGoogle Scholar
  2. 2.
    Carbone MS, Trumbore SE (2007) Contribution of new photosynthetic assimilates to respiration by perennial grasses and shrubs: residence times and allocation patterns. New Phytol 176:124–135CrossRefGoogle Scholar
  3. 3.
    Plain C, Gérant D, Maillard P et al (2009) Tracing of recently assimilated carbon in respiration at high temporal resolution in the field with a tuneable diode laser absorption spectrometer after in situ 13CO2 pulse labelling of 20-year-old beech trees. Tree Physiol 29:1433–1447CrossRefGoogle Scholar
  4. 4.
    Högberg P, Högberg MN, Gottlicher SG et al (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. New Phytol 177:220–228PubMedGoogle Scholar
  5. 5.
    Marron N, Plain C, Longdoz B et al (2009) Seasonal and daily time course of the 13C composition in soil CO2 efflux recorded with a tunable diode laser spectrophotometer (TDLS). Plant Soil 318:137–151CrossRefGoogle Scholar
  6. 6.
    Epron D, Ngao J, Dannoura M et al (2011) Seasonal variations of belowground carbon transfer assessed by in situ 13CO2 pulse labelling of trees. Biogeosciences 8:1153–1168CrossRefGoogle Scholar
  7. 7.
    Dannoura M, Maillard P, Fresneau C et al (2011) In situ assessment of the velocity of carbon transfer by tracing 13C in trunk CO2 efflux after pulse labelling: variations among tree species and season. New Phytol 190:181–192CrossRefGoogle Scholar
  8. 8.
    Epron D, Cabral OMR, Laclau J-P et al (2016) In situ 13CO2 pulse labelling of field-grown eucalypt trees revealed the effects of potassium nutrition and throughfall exclusion on phloem transport of photosynthetic carbon. Tree Physiol 36:6–21CrossRefGoogle Scholar
  9. 9.
    Kagawa A, Sugimoto A, Yamashita K et al (2005) Temporal photosynthetic carbon isotope signatures revealed in a tree ring through 13CO2 pulse-labelling. Plant Cell Environ 28:906–915CrossRefGoogle Scholar
  10. 10.
    Subke J-A, Vallack HW, Tord M et al (2009) Short-term dynamics of abiotic and biotic soil 13CO2 effluxes after in situ 13CO2 pulse labelling of a boreal pine forest. New Phytol 183:349–357CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Daniel Epron
    • 1
    • 2
    Email author
  • Masako Dannoura
    • 2
    • 3
  • Caroline Plain
    • 4
  1. 1.Université de Lorraine, AgroParisTech, Inra, UMR SilvaNancyFrance
  2. 2.Kyoto University, Graduate School of AgricultureKyotoJapan
  3. 3.Kyoto University, Graduate School of Global Environmental StudiesKyotoJapan
  4. 4.UMR Silva, INRA-AgroParisTech, Université de LorraineNancyFrance

Personalised recommendations