Advertisement

Phloem pp 125-133 | Cite as

Studying Phloem Loading with EDTA-Facilitated Phloem Exudate Collection and Analysis

  • Qiyu Xu
  • Yunjuan Ren
  • Johannes LiescheEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2014)

Abstract

Sugars that are produced by photosynthesis in the leaves are transported in the phloem to heterotrophic sink tissues like roots, fruit, or flowers. Since sugars inside the highly specialized cells of the phloem move by bulk flow, it is the loading and unloading of sugars that determines the rates of allocation between organs. Here, a method is described for the relative quantification of sugars that are loaded into the phloem in leaves. It is based on EDTA-facilitated phloem exudate collection and, therefore, requires control experiments to exclude measurement artifacts. It can be applied to a wide range of plant species, including dicots, monocots, and trees.

Key words

Phloem Phloem loading EDTA-facilitated exudation Carbohydrate allocation Sucrose transport 

References

  1. 1.
    Fischer G (1931) Die Stoffbewegungen in der Pflanze. Nature 127:550–551CrossRefGoogle Scholar
  2. 2.
    Will T, Van Bel AJ (2006) Physical and chemical interactions between aphids and plants. J Exp Bot 57:729–737CrossRefGoogle Scholar
  3. 3.
    Doering-Saad C, Newbury HJ, Bale JS, Pritchard J (2002) Use of aphid stylectomy and RT-PCR for the detection of transporter mRNAs in sieve elements. J Exp Bot 53:631–637CrossRefGoogle Scholar
  4. 4.
    Kawabe S, Fukumorita T, Chino M (1980) Collection of rice phloem sap from stylets of homopterous insects severed by YAG laser. Plant Cell Physiol 21:1319–1327CrossRefGoogle Scholar
  5. 5.
    Hewer A, Becker A, Van Bel AJ (2011) An aphid’s odyssey--the cortical quest for the vascular bundl. J Exp Bot 214:3868–3879CrossRefGoogle Scholar
  6. 6.
    Kehr J (2006) Phloem sap proteins: their identities and potential roles in the interaction between plants and phloem-feeding insects. J Exp Bot 57:767–774CrossRefGoogle Scholar
  7. 7.
    Walz C, Giavalisco P, Schad M, Juenger M, Klose J, Kehr J (2004) Proteomics of curcurbit phloem exudate reveals a network of defence proteins. Phytochemistry 65:1795–1804CrossRefGoogle Scholar
  8. 8.
    Hoffmann-Benning S, Gage DA, McIntosh L, Kende H, Zeevaart JA (2002) Comparison of peptides in the phloem sap of flowering and non-flowering Perilla and lupine plants using microbore HPLC followed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometr. Planta 216:140–147CrossRefGoogle Scholar
  9. 9.
    Tetyuk O, Benning UF, Hoffmann-Benning S (2013) Collection and analysis of Arabidopsis phloem exudates using the EDTA-facilitated method. J Vis Exp 80:e51111Google Scholar
  10. 10.
    Zhang B, Tolstikov V, Turnbull C, Hicks LM, Fiehn O (2010) Divergent metabolome and proteome suggest functional independence of dual phloem transport systems in cucurbits. Proc Natl Acad Sci U S A 107:13532–13537CrossRefGoogle Scholar
  11. 11.
    Zhang C, Yu X, Ayre BG, Turgeon R (2012) The origin and composition of cucurbit “phloem” exudate. Plant Physiol 158:1873–1882CrossRefGoogle Scholar
  12. 12.
    King RW, Zeevaart JA (1974) Enhancement of phloem exudation from cut petioles by chelating agents. Plant Physiol 53:96–103CrossRefGoogle Scholar
  13. 13.
    Liu DD, Chao WM, Robert T (2012) Transport of sucrose, not hexose, in the phloem. J Exp Bot 63:4315CrossRefGoogle Scholar
  14. 14.
    Turgeon R, Wolf S (2009) Phloem transport: cellular pathways and molecular trafficking. Annu Rev Plant Biol 60:207–221CrossRefGoogle Scholar
  15. 15.
    Yadav UP, Khadilkar AS, Shaikh MA, Turgeon R, Ayre BG (2017) Assessing rates of long-distance carbon transport in Arabidopsis by collecting phloem exudations into edta solutions after photosynthetic labeling with [14C]CO2. Bio Protoc 7(24):e2656Google Scholar
  16. 16.
    Xu Q, Chen S, Yunjuan R, Chen S, Liesche J (2018) Regulation of sucrose transporters and phloem loading in response to environmental cues. Plant Physiol 176:930–945CrossRefGoogle Scholar
  17. 17.
    Hijaz F, Manthey JA, Van der Merwe D, Killiny N (2016) Nucleotides, micro- and macro-nutrients, limonoids, flavonoids, and hydroxycinnamates composition in the phloem sap of sweet orange. Plant Signal Behav 11:e1183084CrossRefGoogle Scholar
  18. 18.
    Deeken R, Ache P, Kajahn I, Klinkenberg J, Bringmann G, Hedrich R (2008) Identification of Arabidopsis thaliana phloem RNAs provides a search criterion for phloem-based transcripts hidden in complex datasets of microarray experiments. Plant J 55:746–759CrossRefGoogle Scholar
  19. 19.
    Gourieroux AM, Holzapfel BP, Scollary GR, McCully ME, Canny MJ, Rogiers SY (2016) The amino acid distribution in rachis xylem sap and phloem exudate of Vitis vinifera ‘Cabernet Sauvignon’ bunches. Plant Physiol Biochem 105:45–54CrossRefGoogle Scholar
  20. 20.
    Yesbergenova-Cuny Z, Dinant S, Martin-Magniette ML, Quilleré I, Armengaud P, Monfalet P et al (2016) Genetic variability of the phloem sap metabolite content of maize (Zea mays L.) during the kernel-filling period. Plant Sci 252:347–357CrossRefGoogle Scholar
  21. 21.
    Dinant S, Bonnemain JL, Girousse C, Kehr J (2010) Phloem sap intricacy and interplay with aphid feeding. C R Biol 333:504–515CrossRefGoogle Scholar
  22. 22.
    Van Bel AJ, Hess PH (2008) Hexoses as phloem transport sugars: the end of a dogma. J Exp Bot 59:261–272CrossRefGoogle Scholar
  23. 23.
    Guelette BS, Benning UF, Hoffmann-benning S (2012) Identification of lipids and lipid-binding proteins in phloem exudates from Arabidopsis thaliana. J Exp Bot 63:3603–3616CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Life SciencesNorthwest A&F UniversityYanglingChina

Personalised recommendations