Advertisement

Peripheral Biomarkers of Inflammation in Depression: Evidence from Animal Models and Clinical Studies

  • J. P. Brás
  • S. Pinto
  • M. I. Almeida
  • J. Prata
  • O. von Doellinger
  • R. Coelho
  • M. A. Barbosa
  • S. G. SantosEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 2011)

Abstract

Depression is a highly prevalent psychiatric condition, with over 300 million sufferers, and is an important comorbidity for other conditions, like cardiovascular disorders or diabetes. Therapy is largely based on psychotherapy and/or pharmacological intervention, particularly aimed at altering neurotransmitter levels in the central nervous system, but inadequate response to treatment remains a significant clinical problem. Herein, evidence supporting a molecular link between inflammation and depression will be discussed, particularly the increased prevalence of depression in chronic inflammatory diseases and the evidence on the use of anti-inflammatory drugs to treat depression. Moreover, the potential for the levels of peripheral inflammatory molecules to act as depression biomarkers, in the diagnosis and monitoring of depression will be examined, considering clinical- and animal model-based evidence.

Key words

Depression Inflammation Biomarkers Animal models Clinical evidence 

Notes

Acknowledgments

This work was supported by the project (NORTE-01-0145-FEDER-000012), funded by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF). JPB and MIA are funded by doctoral and postdoctoral fellowships (PD/BD/135490/2018; SFRH/BPD/91011/2012), from FCT - Fundação para a Ciência e a Tecnologia. JPB would also like to thank the BiotechHealth PhD program.

References

  1. 1.
    WHO (2017) Depression. WHO, GenevaGoogle Scholar
  2. 2.
    Abbott R, Whear R, Nikolaou V, Bethel A, Coon JT, Stein K, Dickens C (2015) Tumour necrosis factor-alpha inhibitor therapy in chronic physical illness: a systematic review and meta-analysis of the effect on depression and anxiety. J Psychosom Res 79:175–184PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Frank E, Thase ME (1999) Natural history and preventative treatment of recurrent mood disorders. Annu Rev Med 50:453–468PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Gold PW, Machado-Vieira R, Pavlatou MG (2015) Clinical and biochemical manifestations of depression: relation to the neurobiology of stress. Neural Plast 2015:581976PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Fiore V, Marci M, Poggi A, Giagulli VA, Licchelli B, Iacoviello M, Guastamacchia E, De Pergola G, Triggiani V (2015) The association between diabetes and depression: a very disabling condition. Endocrine 48:14–24PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Wu Y, Sun D, Wang B, Li Y, Ma Y (2018) The relationship of depressive symptoms and functional and structural markers of subclinical atherosclerosis: a systematic review and meta-analysis. Eur J Prev Cardiol 25:706–716PubMedCrossRefPubMedCentralGoogle Scholar
  7. 7.
    APA (2013) Depressive disorders. In: Diagnostic and statistical manual of mental disorders. American Psychiatric Association, Washington, DCGoogle Scholar
  8. 8.
    Pigott HE (2015) The STAR∗D trial: it is time to reexamine the clinical beliefs that guide the treatment of major depression. Can J Psychiatry 60:9–13PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    O’Brien SM, Scully P, Fitzgerald P, Scott LV, Dinan TG (2007) Plasma cytokine profiles in depressed patients who fail to respond to selective serotonin reuptake inhibitor therapy. J Psychiatr Res 41:326–331PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Fitzgerald P, O’Brien SM, Scully P, Rijkers K, Scott LV, Dinan TG (2006) Cutaneous glucocorticoid receptor sensitivity and pro-inflammatory cytokine levels in antidepressant-resistant depression. Psychol Med 36:37–43PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Harrison NA, Brydon L, Walker C, Gray MA, Steptoe A, Critchley HD (2009) Inflammation causes mood changes through alterations in subgenual cingulate activity and mesolimbic connectivity. Biol Psychiatry 66:407–414PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Lanquillon S, Krieg JC, Bening-Abu-Shach U, Vedder H (2000) Cytokine production and treatment response in major depressive disorder. Neuropsychopharmacology 22:370–379PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Sluzewska A, Sobieska M, Rybakowski JK (1997) Changes in acute-phase proteins during lithium potentiation of antidepressants in refractory depression. Neuropsychobiology 35:123–127PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Kessler RC, McGonagle KA, Zhao S, Nelson CB, Hughes M, Eshleman S, Wittchen HU, Kendler KS (1994) Lifetime and 12-month prevalence of DSM-III-R psychiatric disorders in the United States. Results from the National Comorbidity Survey. Arch Gen Psychiatry 51:8–19PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Dantzer R, Kelley KW (1989) Stress and immunity: an integrated view of relationships between the brain and the immune system. Life Sci 44:1995–2008PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Hart BL (1988) Biological basis of the behavior of sick animals. Neurosci Biobehav Rev 12:123–137PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Dantzer R, O’Connor JC, Freund GG, Johnson RW, Kelley KW (2008) From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci 9:46–56PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Maier SF, Watkins LR (1998) Cytokines for psychologists: implications of bidirectional immune-to-brain communication for understanding behavior, mood, and cognition. Psychol Rev 105:83–107PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Smith RS (1991) The macrophage theory of depression. Med Hypotheses 35:298–306PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Maes M, Bosmans E, Suy E, Vandervorst C, DeJonckheere C, Raus J (1991) Depression-related disturbances in mitogen-induced lymphocyte responses and interleukin-1 beta and soluble interleukin-2 receptor production. Acta Psychiatr Scand 84:379–386PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Maes M, Lambrechts J, Bosmans E, Jacobs J, Suy E, Vandervorst C, de Jonckheere C, Minner B, Raus J (1992) Evidence for a systemic immune activation during depression: results of leukocyte enumeration by flow cytometry in conjunction with monoclonal antibody staining. Psychol Med 22:45–53PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Maes M, Scharpe S, Bosmans E, Vandewoude M, Suy E, Uyttenbroeck W, Cooreman W, Vandervorst C, Raus J (1992) Disturbances in acute phase plasma proteins during melancholia: additional evidence for the presence of an inflammatory process during that illness. Prog Neuropsychopharmacol Biol Psychiatry 16:501–515PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Ginhoux F, Jung S (2014) Monocytes and macrophages: developmental pathways and tissue homeostasis. Nat Rev Immunol 14:392–404PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Reader BF, Jarrett BL, McKim DB, Wohleb ES, Godbout JP, Sheridan JF (2015) Peripheral and central effects of repeated social defeat stress: monocyte trafficking, microglial activation, and anxiety. Neuroscience 289:429–442PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Torres-Platas SG, Cruceanu C, Chen GG, Turecki G, Mechawar N (2014) Evidence for increased microglial priming and macrophage recruitment in the dorsal anterior cingulate white matter of depressed suicides. Brain Behav Immun 42:50–59PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Denicoff KD, Rubinow DR, Papa MZ, Simpson C, Seipp CA, Lotze MT, Chang AE, Rosenstein D, Rosenberg SA (1987) The neuropsychiatric effects of treatment with interleukin-2 and lymphokine-activated killer cells. Ann Intern Med 107:293–300PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Raison CL, Capuron L, Miller AH (2006) Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol 27:24–31PubMedCrossRefPubMedCentralGoogle Scholar
  29. 29.
    Capuron L, Ravaud A, Dantzer R (2000) Early depressive symptoms in cancer patients receiving interleukin 2 and/or interferon alfa-2b therapy. J Clin Oncol 18:2143–2151PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Constant A, Castera L, Dantzer R, Couzigou P, de Ledinghen V, Demotes-Mainard J, Henry C (2005) Mood alterations during interferon-alfa therapy in patients with chronic hepatitis C: evidence for an overlap between manic/hypomanic and depressive symptoms. J Clin Psychiatry 66:1050–1057PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Kim S, Foley FW, Picone MA, Halper J, Zemon V (2012) Depression Levels and Interferon Treatment in People with Multiple Sclerosis. Int J MS Care 14:10–16PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Chiu WC, Su YP, Su KP, Chen PC (2017) Recurrence of depressive disorders after interferon-induced depression. Transl Psychiatry 7:e1026PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Udina M, Castellvi P, Moreno-Espana J, Navines R, Valdes M, Forns X, Langohr K, Sola R, Vieta E, Martin-Santos R (2012) Interferon-induced depression in chronic hepatitis C: a systematic review and meta-analysis. J Clin Psychiatry 73:1128–1138PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Murakami Y, Ishibashi T, Tomita E, Imamura Y, Tashiro T, Watcharanurak K, Nishikawa M, Takahashi Y, Takakura Y, Mitani S, Fujigaki H, Ohta Y, Kubo H, Mamiya T, Nabeshima T, Kim H-C, Yamamoto Y, Saito K (2016) Depressive symptoms as a side effect of Interferon-α therapy induced by induction of indoleamine 2,3-dioxygenase 1. Sci Rep 6:29920PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Raison CL, Demetrashvili M, Capuron L, Miller AH (2005) Neuropsychiatric adverse effects of interferon-alpha: recognition and management. CNS Drugs 19:105–123PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Valentine AD, Meyers CA (1995) Successful treatment of interferon-alpha-induced mood disorder with nortriptyline. Psychosomatics 36:418–419PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Musselman DL, Lawson DH, Gumnick JF, Manatunga AK, Penna S, Goodkin RS, Greiner K, Nemeroff CB, Miller AH (2001) Paroxetine for the prevention of depression induced by high-dose interferon alfa. N Engl J Med 344:961–966PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Kraus MR, Schäfer A, Schöttker K, Keicher C, Weissbrich B, Hofbauer I, Scheurlen M (2008) Therapy of interferon-induced depression in chronic hepatitis C with citalopram: a randomised, double-blind, placebo-controlled study. Gut 57:531PubMedCrossRefPubMedCentralGoogle Scholar
  39. 39.
    Gupta RK, Kumar R, Bassett M (2006) Interferon-induced depressive illness in hep C patients responds to SSRI antidepressant treatments. Neuropsychiatr Dis Treat 2:355–358PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Morikawa O, Sakai N, Obara H, Saito N (1998) Effects of interferon-alpha, interferon-gamma and cAMP on the transcriptional regulation of the serotonin transporter. Eur J Pharmacol 349:317–324PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Zhu CB, Blakely RD, Hewlett WA (2006) The proinflammatory cytokines interleukin-1beta and tumor necrosis factor-alpha activate serotonin transporters. Neuropsychopharmacology 31:2121–2131PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Banks WA, Kastin AJ, Gutierrez EG (1994) Penetration of interleukin-6 across the murine blood-brain barrier. Neurosci Lett 179:53–56PubMedCrossRefPubMedCentralGoogle Scholar
  43. 43.
    Banks WA, Kastin AJ, Broadwell RD (1995) Passage of cytokines across the blood-brain barrier. Neuroimmunomodulation 2:241–248PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Yirmiya R, Rimmerman N, Reshef R (2015) Depression as a microglial disease. Trends Neurosci 38:637–658PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Nimmerjahn A, Kirchhoff F, Helmchen F (2005) Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308:1314PubMedCrossRefPubMedCentralGoogle Scholar
  46. 46.
    Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P (2011) Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA (2007) The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–1178PubMedCrossRefPubMedCentralGoogle Scholar
  48. 48.
    Limatola C, Ransohoff RM (2014) Modulating neurotoxicity through CX3CL1/CX3CR1 signaling. Front Cell Neurosci 8:229PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Meeuwsen S, Persoon-Deen C, Bsibsi M, Ravid R, van Noort JM (2003) Cytokine, chemokine and growth factor gene profiling of cultured human astrocytes after exposure to proinflammatory stimuli. Glia 43:243–253PubMedCrossRefPubMedCentralGoogle Scholar
  50. 50.
    Pang Y, Cai Z, Rhodes PG (2001) Analysis of genes differentially expressed in astrocytes stimulated with lipopolysaccharide using cDNA arrays. Brain Res 914:15–22PubMedCrossRefGoogle Scholar
  51. 51.
    Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM (2011) Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 14:1142–1149PubMedCrossRefGoogle Scholar
  52. 52.
    Yamasaki R, Lu H, Butovsky O, Ohno N, Rietsch AM, Cialic R, Wu PM, Doykan CE, Lin J, Cotleur AC, Kidd G, Zorlu MM, Sun N, Hu W, Liu L, Lee J-C, Taylor SE, Uehlein L, Dixon D, Gu J, Floruta CM, Zhu M, Charo IF, Weiner HL, Ransohoff RM (2014) Differential roles of microglia and monocytes in the inflamed central nervous system. J Exp Med 211:1533–1549PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sawicki CM, McKim DB, Wohleb ES, Jarrett BL, Reader BF, Norden DM, Godbout JP, Sheridan JF (2015) Social defeat promotes a reactive endothelium in a brain region-dependent manner with increased expression of key adhesion molecules, selectins and chemokines associated with the recruitment of myeloid cells to the brain. Neuroscience 302:151–164PubMedCrossRefGoogle Scholar
  54. 54.
    Tong L, Gong Y, Wang P, Hu W, Wang J, Chen Z, Zhang W, Huang C (2017) Microglia loss contributes to the development of major depression induced by different types of chronic stresses. Neurochem Res 42:2698–2711PubMedCrossRefGoogle Scholar
  55. 55.
    Grigoleit JS, Kullmann JS, Wolf OT, Hammes F, Wegner A, Jablonowski S, Engler H, Gizewski E, Oberbeck R, Schedlowski M (2011) Dose-dependent effects of endotoxin on neurobehavioral functions in humans. PLoS One 6:e28330PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Reichenberg A, Yirmiya R, Schuld A, Kraus T, Haack M, Morag A, Pollmacher T (2001) Cytokine-associated emotional and cognitive disturbances in humans. Arch Gen Psychiatry 58:445–452PubMedCrossRefGoogle Scholar
  57. 57.
    Frank MG, Baratta MV, Sprunger DB, Watkins LR, Maier SF (2007) Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun 21:47–59PubMedCrossRefGoogle Scholar
  58. 58.
    Wohleb ES, Hanke ML, Corona AW, Powell ND, Stiner LM, Bailey MT, Nelson RJ, Godbout JP, Sheridan JF (2011) beta-Adrenergic receptor antagonism prevents anxiety-like behavior and microglial reactivity induced by repeated social defeat. J Neurosci 31:6277–6288PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Frank MG, Miguel ZD, Watkins LR, Maier SF (2010) Prior exposure to glucocorticoids sensitizes the neuroinflammatory and peripheral inflammatory responses to E. coli lipopolysaccharide. Brain Behav Immun 24:19–30PubMedCrossRefGoogle Scholar
  60. 60.
    Leventopoulos M, Ruedi-Bettschen D, Knuesel I, Feldon J, Pryce CR, Opacka-Juffry J (2007) Long-term effects of early life deprivation on brain glia in Fischer rats. Brain Res 1142:119–126PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Nagy C, Suderman M, Yang J, Szyf M, Mechawar N, Ernst C, Turecki G (2014) Astrocytic abnormalities and global DNA methylation patterns in depression and suicide. Mol Psychiatry 20:320PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Tynan RJ, Beynon SB, Hinwood M, Johnson SJ, Nilsson M, Woods JJ, Walker FR (2013) Chronic stress-induced disruption of the astrocyte network is driven by structural atrophy and not loss of astrocytes. Acta Neuropathol 126:75–91PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Hodes GE, Kana V, Menard C, Merad M, Russo SJ (2015) Neuroimmune mechanisms of depression. Nat Neurosci 18:1386–1393PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Irwin MR, Miller AH (2007) Depressive disorders and immunity: 20 years of progress and discovery. Brain Behav Immun 21:374–383PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Burke HM, Davis MC, Otte C, Mohr DC (2005) Depression and cortisol responses to psychological stress: a meta-analysis. Psychoneuroendocrinology 30:846–856PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Amsterdam A, Tajima K, Sasson R (2002) Cell-specific regulation of apoptosis by glucocorticoids: implication to their anti-inflammatory action. Biochem Pharmacol 64:843–850PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Marino F, Cosentino M (2013) Adrenergic modulation of immune cells: an update. Amino Acids 45:55–71PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Cohen S, Janicki-Deverts D, Doyle WJ, Miller GE, Frank E, Rabin BS, Turner RB (2012) Chronic stress, glucocorticoid receptor resistance, inflammation, and disease risk. Proc Natl Acad Sci 109:5995–5999PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Miller AH (2008) Inflammation versus glucocorticoids as purveyors of pathology during stress: have we reached the tipping point? Biol Psychiatry 64:263–265PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Avitsur R, Powell N, Padgett DA, Sheridan JF (2009) Social interactions, stress, and immunity. Immunol Allergy Clin North Am 29:285–293PubMedCrossRefPubMedCentralGoogle Scholar
  72. 72.
    Engler H, Bailey MT, Engler A, Stiner-Jones LM, Quan N, Sheridan JF (2008) Interleukin-1 receptor type 1-deficient mice fail to develop social stress-associated glucocorticoid resistance in the spleen. Psychoneuroendocrinology 33:108–117PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Manz MG, Boettcher S (2014) Emergency granulopoiesis. Nat Rev Immunol 14:302–314PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Pariante CM (2006) The glucocorticoid receptor: part of the solution or part of the problem? J Psychopharmacol 20:79–84PubMedCrossRefPubMedCentralGoogle Scholar
  75. 75.
    Horowitz MA, Zunszain PA (2015) Neuroimmune and neuroendocrine abnormalities in depression: two sides of the same coin. Ann N Y Acad Sci 1351:68–79PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Oxenkrug GF (2010) Tryptophan–kynurenine metabolism as a common mediator of genetic and environmental impacts in major depressive disorder: the serotonin hypothesis revisited 40 years later. Isr J Psychiatry Relat Sci 47:56–63PubMedPubMedCentralGoogle Scholar
  77. 77.
    Felger JC, Lotrich FE (2013) Inflammatory cytokines in depression: neurobiological mechanisms and therapeutic implications. Neuroscience 246:199–229PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Walter MW (2005) Monoamine reuptake inhibitors: highlights of recent research developments. Drug Dev Res 65:97–118CrossRefGoogle Scholar
  79. 79.
    Heyes MP, Achim CL, Wiley CA, Major EO, Saito K, Markey SP (1996) Human microglia convert l-tryptophan into the neurotoxin quinolinic acid. Biochem J 320:595–597PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Steiner J, Walter M, Gos T, Guillemin GJ, Bernstein HG, Sarnyai Z, Mawrin C, Brisch R, Bielau H, Meyer zu Schwabedissen L, Bogerts B, Myint AM (2011) Severe depression is associated with increased microglial quinolinic acid in subregions of the anterior cingulate gyrus: evidence for an immune-modulated glutamatergic neurotransmission? J Neuroinflammation 8:94PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Dang Y, Dale WE, Brown OR (2000) Comparative effects of oxygen on indoleamine 2,3-dioxygenase and tryptophan 2,3-dioxygenase of the kynurenine pathway. Free Radic Biol Med 28:615–624PubMedCrossRefGoogle Scholar
  82. 82.
    Fukui S, Schwarcz R, Rapoport SI, Takada Y, Smith QR (1991) Blood-brain barrier transport of kynurenines: implications for brain synthesis and metabolism. J Neurochem 56:2007–2017PubMedCrossRefGoogle Scholar
  83. 83.
    Okuda S, Nishiyama N, Saito H, Katsuki H (1998) 3-Hydroxykynurenine, an endogenous oxidative stress generator, causes neuronal cell death with apoptotic features and region selectivity. J Neurochem 70:299–307PubMedCrossRefGoogle Scholar
  84. 84.
    Braidy N, Grant R, Adams S, Guillemin GJ (2010) Neuroprotective effects of naturally occurring polyphenols on quinolinic acid-induced excitotoxicity in human neurons. FEBS J 277:368–382PubMedCrossRefGoogle Scholar
  85. 85.
    Myint AM, Kim YK (2003) Cytokine-serotonin interaction through IDO: a neurodegeneration hypothesis of depression. Med Hypotheses 61:519–525PubMedCrossRefGoogle Scholar
  86. 86.
    Myint AM, Kim YK, Verkerk R, Scharpe S, Steinbusch H, Leonard B (2007) Kynurenine pathway in major depression: evidence of impaired neuroprotection. J Affect Disord 98:143–151PubMedCrossRefGoogle Scholar
  87. 87.
    Fallarino F, Grohmann U, Vacca C, Bianchi R, Orabona C, Spreca A, Fioretti MC, Puccetti P (2002) T cell apoptosis by tryptophan catabolism. Cell Death Differ 9:1069–1077PubMedCrossRefGoogle Scholar
  88. 88.
    Platten M, Ho PP, Youssef S, Fontoura P, Garren H, Hur EM, Gupta R, Lee LY, Kidd BA, Robinson WH, Sobel RA, Selley ML, Steinman L (2005) Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310:850–855PubMedCrossRefGoogle Scholar
  89. 89.
    Schiepers OJ, Wichers MC, Maes M (2005) Cytokines and major depression. Prog Neuropsychopharmacol Biol Psychiatry 29:201–217PubMedCrossRefGoogle Scholar
  90. 90.
    Owe-Young R, Webster NL, Mukhtar M, Pomerantz RJ, Smythe G, Walker D, Armati PJ, Crowe SM, Brew BJ (2008) Kynurenine pathway metabolism in human blood-brain-barrier cells: implications for immune tolerance and neurotoxicity. J Neurochem 105:1346–1357PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Carpenter LL, Anderson GM, Pelton GH, Gudin JA, Kirwin PD, Price LH, Heninger GR, McDougle CJ (1998) Tryptophan depletion during continuous CSF sampling in healthy human subjects. Neuropsychopharmacology 19:26–35PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Culley WJ, Saunders RN, Mertz ET, Jolly DH (1963) Effect of a tryptophan deficient diet on brain serotonin and plasma tryptophan level. Proc Soc Exp Biol Med 113:645–648PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Delgado PL, Charney DS, Price LH, Aghajanian GK, Landis H, Heninger GR (1990) Serotonin function and the mechanism of antidepressant action. Reversal of antidepressant-induced remission by rapid depletion of plasma tryptophan. Arch Gen Psychiatry 47:411–418PubMedCrossRefPubMedCentralGoogle Scholar
  94. 94.
    Tilleux S, Hermans E (2007) Neuroinflammation and regulation of glial glutamate uptake in neurological disorders. J Neurosci Res 85:2059–2070PubMedCrossRefPubMedCentralGoogle Scholar
  95. 95.
    Sanacora G, Treccani G, Popoli M (2012) Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology 62:63–77PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Zunszain PA, Anacker C, Cattaneo A, Carvalho LA, Pariante CM (2011) Glucocorticoids, cytokines and brain abnormalities in depression. Prog Neuropsychopharmacol Biol Psychiatry 35:722–729PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Chapman BP, Moynihan J (2009) The brain-skin connection: role of psychosocial factors and neuropeptides in psoriasis. Expert Rev Clin Immunol 5:623–627PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Moynihan J, Rieder E, Tausk F (2010) Psychoneuroimmunology: the example of psoriasis. G Ital Dermatol Venereol 145:221–228PubMedPubMedCentralGoogle Scholar
  99. 99.
    Hughes JE, Barraclough BM, Hamblin LG, White JE (1983) Psychiatric symptoms in dermatology patients. Br J Psychiatry 143:51–54PubMedCrossRefGoogle Scholar
  100. 100.
    Fortune DG, Richards HL, Griffiths CE (2005) Psychologic factors in psoriasis: consequences, mechanisms, and interventions. Dermatol Clin 23:681–694PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Naldi L, Peli L, Parazzini F, Carrel CF (2001) Family history of psoriasis, stressful life events, and recent infectious disease are risk factors for a first episode of acute guttate psoriasis: results of a case-control study. J Am Acad Dermatol 44:433–438PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Fortune DG, Richards HL, Griffiths CE, Main CJ (2002) Psychological stress, distress and disability in patients with psoriasis: consensus and variation in the contribution of illness perceptions, coping and alexithymia. Br J Clin Psychol 41:157–174PubMedCrossRefPubMedCentralGoogle Scholar
  103. 103.
    Fortune DG, Richards HL, Griffiths CE, Main CJ (2004) Targeting cognitive-behaviour therapy to patients’ implicit model of psoriasis: results from a patient preference controlled trial. Br J Clin Psychol 43:65–82PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Zachariae R, Oster H, Bjerring P, Kragballe K (1996) Effects of psychologic intervention on psoriasis: a preliminary report. J Am Acad Dermatol 34:1008–1015PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Kabat-Zinn J, Wheeler E, Light T, Skillings A, Scharf MJ, Cropley TG, Hosmer D, Bernhard JD (1998) Influence of a mindfulness meditation-based stress reduction intervention on rates of skin clearing in patients with moderate to severe psoriasis undergoing phototherapy (UVB) and photochemotherapy (PUVA). Psychosom Med 60:625–632PubMedCrossRefPubMedCentralGoogle Scholar
  106. 106.
    Fleming P, Roubille C, Richer V, Starnino T, McCourt C, McFarlane A, Siu S, Kraft J, Lynde C, Pope JE, Keeling S, Dutz J, Bessette L, Bissonnette R, Haraoui B, Gulliver WP (2015) Effect of biologics on depressive symptoms in patients with psoriasis: a systematic review. J Eur Acad Dermatol Venereol 29:1063–1070PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Menter A, Augustin M, Signorovitch J, Yu AP, Wu EQ, Gupta SR, Bao Y, Mulani P (2010) The effect of adalimumab on reducing depression symptoms in patients with moderate to severe psoriasis: a randomized clinical trial. J Am Acad Dermatol 62:812–818PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    de Mattos BR, Garcia MP, Nogueira JB, Paiatto LN, Albuquerque CG, Souza CL, Fernandes LG, Tamashiro WM, Simioni PU (2015) Inflammatory bowel disease: an overview of immune mechanisms and biological treatments. Mediators Inflamm 2015:493012PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Bonaz B (2013) Inflammatory bowel diseases: a dysfunction of brain-gut interactions? Minerva Gastroenterol Dietol 59:241–259PubMedPubMedCentralGoogle Scholar
  110. 110.
    Bonaz BL, Bernstein CN (2013) Brain-gut interactions in inflammatory bowel disease. Gastroenterology 144:36–49PubMedCrossRefPubMedCentralGoogle Scholar
  111. 111.
    Ananthakrishnan AN, Khalili H, Pan A, Higuchi LM, de Silva P, Richter JM, Fuchs CS, Chan AT (2013) Association between depressive symptoms and incidence of Crohn’s disease and ulcerative colitis: results from the Nurses’ Health Study. Clin Gastroenterol Hepatol 11:57–62PubMedCrossRefPubMedCentralGoogle Scholar
  112. 112.
    Goodhand JR, Greig FI, Koodun Y, McDermott A, Wahed M, Langmead L, Rampton DS (2012) Do antidepressants influence the disease course in inflammatory bowel disease? A retrospective case-matched observational study. Inflamm Bowel Dis 18:1232–1239PubMedCrossRefPubMedCentralGoogle Scholar
  113. 113.
    Cawthorpe D, Davidson M (2015) Temporal comorbidity of mental disorder and ulcerative colitis. Perm J 19:52–57PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    Vlachos II, Barbatis C, Tsopanomichalou M, Abou-Assabeh L, Goumas K, Ginieri-Coccossis M, Economou M, Papadimitriou GN, Patsouris E, Nicolopoulou-Stamati P (2014) Correlation between depression, anxiety, and polymorphonuclear cells’ resilience in ulcerative colitis: the mediating role of heat shock protein 70. BMC Gastroenterol 14:77PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Mardini HE, Kip KE, Wilson JW (2004) Crohn’s disease: a two-year prospective study of the association between psychological distress and disease activity. Dig Dis Sci 49:492–497PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Mittermaier C, Dejaco C, Waldhoer T, Oefferlbauer-Ernst A, Miehsler W, Beier M, Tillinger W, Gangl A, Moser G (2004) Impact of depressive mood on relapse in patients with inflammatory bowel disease: a prospective 18-month follow-up study. Psychosom Med 66:79–84PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    McInnes IB, Schett G (2011) The pathogenesis of rheumatoid arthritis. N Engl J Med 365:2205–2219PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Waraich P, Goldner EM, Somers JM, Hsu L (2004) Prevalence and incidence studies of mood disorders: a systematic review of the literature. Can J Psychiatry 49:124–138PubMedCrossRefPubMedCentralGoogle Scholar
  119. 119.
    Ang DC, Choi H, Kroenke K, Wolfe F (2005) Comorbid depression is an independent risk factor for mortality in patients with rheumatoid arthritis. J Rheumatol 32:1013–1019PubMedPubMedCentralGoogle Scholar
  120. 120.
    van Hoogmoed D, Fransen J, Bleijenberg G, van Riel P (2010) Physical and psychosocial correlates of severe fatigue in rheumatoid arthritis. Rheumatology (Oxford) 49:1294–1302CrossRefGoogle Scholar
  121. 121.
    Mikuls T, Saag K, Criswell L, Merlino L, Cerhan JR (2003) Health related quality of life in women with elderly onset rheumatoid arthritis. J Rheumatol 30:952–957PubMedPubMedCentralGoogle Scholar
  122. 122.
    Wolfe F, Michaud K (2009) Predicting depression in rheumatoid arthritis: the signal importance of pain extent and fatigue, and comorbidity. Arthritis Rheum 61:667–673PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Vallerand IA, Lewinson RT, Frolkis AD, Lowerison MW, Kaplan GG, Swain MG, Bulloch AGM, Patten SB, Barnabe C (2018) Depression as a risk factor for the development of rheumatoid arthritis: a population-based cohort study. RMD Open 4:e000670PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Braley TJ, Chervin RD, Segal BM (2012) Fatigue, tiredness, lack of energy, and sleepiness in multiple sclerosis patients referred for clinical polysomnography. Mult Scler Int 2012:673936PubMedPubMedCentralGoogle Scholar
  125. 125.
    Patten SB, Beck CA, Williams JV, Barbui C, Metz LM (2003) Major depression in multiple sclerosis: a population-based perspective. Neurology 61:1524–1527PubMedCrossRefPubMedCentralGoogle Scholar
  126. 126.
    Tarrants M, Oleen-Burkey M, Castelli-Haley J, Lage MJ (2011) The impact of comorbid depression on adherence to therapy for multiple sclerosis. Mult Scler Int 2011:271321PubMedPubMedCentralGoogle Scholar
  127. 127.
    Patten SB, Williams JV, Lavorato DH, Koch M, Metz LM (2013) Depression as a predictor of occupational transition in a multiple sclerosis cohort. Funct Neurol 28:275–280PubMedPubMedCentralGoogle Scholar
  128. 128.
    Feinstein A (1997) Multiple sclerosis, depression, and suicide. Clinicians should pay more attention to psychopathology. BMJ 315:691–692PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Feinstein A (2002) An examination of suicidal intent in patients with multiple sclerosis. Neurology 59:674–678PubMedCrossRefPubMedCentralGoogle Scholar
  130. 130.
    Pompili M, Forte A, Palermo M, Stefani H, Lamis DA, Serafini G, Amore M, Girardi P (2012) Suicide risk in multiple sclerosis: a systematic review of current literature. J Psychosom Res 73:411–417PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Raison CL, Rutherford RE, Woolwine BJ et al (2013) A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. JAMA Psychiat 70:31–41CrossRefGoogle Scholar
  132. 132.
    Langley RG, Feldman SR, Han C, Schenkel B, Szapary P, Hsu MC, Ortonne JP, Gordon KB, Kimball AB (2010) Ustekinumab significantly improves symptoms of anxiety, depression, and skin-related quality of life in patients with moderate-to-severe psoriasis: results from a randomized, double-blind, placebo-controlled phase III trial. J Am Acad Dermatol 63:457–465PubMedCrossRefPubMedCentralGoogle Scholar
  133. 133.
    Brietzke E, Scheinberg M, Lafer B (2011) Therapeutic potential of interleukin-6 antagonism in bipolar disorder. Med Hypotheses 76:21–23PubMedCrossRefPubMedCentralGoogle Scholar
  134. 134.
    Iyengar RL, Gandhi S, Aneja A, Thorpe K, Razzouk L, Greenberg J, Mosovich S, Farkouh ME (2013) NSAIDs are associated with lower depression scores in patients with osteoarthritis. Am J Med 126(1017):e1011–e1018Google Scholar
  135. 135.
    Kohler O, Benros ME, Nordentoft M, Farkouh ME, Iyengar RL, Mors O, Krogh J (2014) Effect of anti-inflammatory treatment on depression, depressive symptoms, and adverse effects: a systematic review and meta-analysis of randomized clinical trials. JAMA Psychiat 71:1381–1391CrossRefGoogle Scholar
  136. 136.
    Warner-Schmidt JL, Vanover KE, Chen EY, Marshall JJ, Greengard P (2011) Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proc Natl Acad Sci U S A 108:9262–9267PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Fourrier C, Sampson E, Mills NT, Baune BT (2018) Anti-inflammatory treatment of depression: study protocol for a randomised controlled trial of vortioxetine augmented with celecoxib or placebo. Trials 19:447PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Sluzewska A, Rybakowski JK, Laciak M, Mackiewicz A, Sobieska M, Wiktorowicz K (1995) Interleukin-6 serum levels in depressed patients before and after treatment with fluoxetine. Ann N Y Acad Sci 762:474–476PubMedCrossRefPubMedCentralGoogle Scholar
  139. 139.
    Jazayeri S, Keshavarz SA, Tehrani-Doost M, Djalali M, Hosseini M, Amini H, Chamari M, Djazayery A (2010) Effects of eicosapentaenoic acid and fluoxetine on plasma cortisol, serum interleukin-1beta and interleukin-6 concentrations in patients with major depressive disorder. Psychiatry Res 178:112–115PubMedCrossRefPubMedCentralGoogle Scholar
  140. 140.
    Kubera M, Kenis G, Bosmans E, Kajta M, Basta-Kaim A, Scharpe S, Budziszewska B, Maes M (2004) Stimulatory effect of antidepressants on the production of IL-6. Int Immunopharmacol 4:185–192PubMedCrossRefPubMedCentralGoogle Scholar
  141. 141.
    Murrough JW, Iosifescu DV, Chang LC, Al Jurdi RK, Green CE, Perez AM, Iqbal S, Pillemer S, Foulkes A, Shah A, Charney DS, Mathew SJ (2013) Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. Am J Psychiatry 170:1134–1142PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    De Kock M, Loix S, Lavand’homme P (2013) Ketamine and peripheral inflammation. CNS Neurosci Ther 19:403–410PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Miller AH, Haroon E, Raison CL, Felger JC (2013) Cytokine targets in the brain: impact on neurotransmitters and neurocircuits. Depress Anxiety 30:297–306PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Miller AH, Maletic V, Raison CL (2009) Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry 65:732–741PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Raison CL, Felger JC, Miller AH (2013) Inflammation and treatment resistance in major depression: the perfect storm. Psychiatr Times 30Google Scholar
  146. 146.
    Eller T, Vasar V, Shlik J, Maron E (2008) Pro-inflammatory cytokines and treatment response to escitalopram in major depressive disorder. Prog Neuro Psychopharmacol Biol Psychiatry 32:445–450CrossRefGoogle Scholar
  147. 147.
    Miller AH, Raison CL (2016) The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol 16:22–34PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Lotrich FE (2015) Inflammatory cytokine-associated depression. Brain Res 1617:113–125PubMedCrossRefPubMedCentralGoogle Scholar
  149. 149.
    Strawbridge R, Young AH, Cleare AJ (2017) Biomarkers for depression: recent insights, current challenges and future prospects. Neuropsychiatr Dis Treat 13:1245–1262PubMedPubMedCentralCrossRefGoogle Scholar
  150. 150.
    Postal M, Lapa AT, Sinicato NA, de Oliveira Peliçari K, Peres FA, Costallat LTL, Fernandes PT, Marini R, Appenzeller S (2016) Depressive symptoms are associated with tumor necrosis factor alpha in systemic lupus erythematosus. J Neuroinflammation 13:5PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Farooq RK, Asghar K, Kanwal S, Zulqernain A (2017) Role of inflammatory cytokines in depression: focus on interleukin-1beta. Biomed Rep 6:15–20PubMedCrossRefPubMedCentralGoogle Scholar
  152. 152.
    Howren MB, Lamkin DM, Suls J (2009) Associations of depression with C-reactive protein, IL-1, and IL-6: a meta-analysis. Psychosom Med 71:171–186PubMedCrossRefPubMedCentralGoogle Scholar
  153. 153.
    Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, Lanctot KL (2010) A meta-analysis of cytokines in major depression. Biol Psychiatry 67:446–457PubMedCrossRefPubMedCentralGoogle Scholar
  154. 154.
    Strawbridge R, Arnone D, Danese A, Papadopoulos A, Herane Vives A, Cleare AJ (2015) Inflammation and clinical response to treatment in depression: a meta-analysis. Eur Neuropsychopharmacol 25:1532–1543CrossRefPubMedGoogle Scholar
  155. 155.
    Hannestad J, DellaGioia N, Bloch M (2011) The effect of antidepressant medication treatment on serum levels of inflammatory cytokines: a meta-analysis. Neuropsychopharmacology 36:2452–2459PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Quan N, Banks WA (2007) Brain-immune communication pathways. Brain Behav Immun 21:727–735PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Mantovani A, Bonecchi R, Locati M (2006) Tuning inflammation and immunity by chemokine sequestration: decoys and more. Nat Rev Immunol 6:907PubMedCrossRefPubMedCentralGoogle Scholar
  158. 158.
    Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354:610–621PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Stuart MJ, Singhal G, Baune BT (2015) Systematic review of the neurobiological relevance of chemokines to psychiatric disorders. Front Cell Neurosci 9:357PubMedPubMedCentralGoogle Scholar
  160. 160.
    Stuart MJ, Baune BT (2014) Chemokines and chemokine receptors in mood disorders, schizophrenia, and cognitive impairment: a systematic review of biomarker studies. Neurosci Biobehav Rev 42:93–115PubMedCrossRefPubMedCentralGoogle Scholar
  161. 161.
    de Haas AH, van Weering HR, de Jong EK, Boddeke HW, Biber KP (2007) Neuronal chemokines: versatile messengers in central nervous system cell interaction. Mol Neurobiol 36:137–151PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Gao Y-J, Ji R-R (2010) Chemokines, neuronal-glial interactions, and central processing of neuropathic pain. Pharmacol Ther 126:56–68PubMedPubMedCentralCrossRefGoogle Scholar
  163. 163.
    Banisadr G, Gosselin RD, Mechighel P, Kitabgi P, Rostene W, Parsadaniantz SM (2005) Highly regionalized neuronal expression of monocyte chemoattractant protein-1 (MCP-1/CCL2) in rat brain: evidence for its colocalization with neurotransmitters and neuropeptides. J Comp Neurol 489:275–292PubMedCrossRefPubMedCentralGoogle Scholar
  164. 164.
    Zhou Y, Tang H, Liu J, Dong J, Xiong H (2011) Chemokine CCL2 modulation of neuronal excitability and synaptic transmission in rat hippocampal slices. J Neurochem 116:406–414PubMedCrossRefPubMedCentralGoogle Scholar
  165. 165.
    Marciniak E, Faivre E, Dutar P, Alves Pires C, Demeyer D, Caillierez R, Laloux C, Buee L, Blum D, Humez S (2015) The Chemokine MIP-1alpha/CCL3 impairs mouse hippocampal synaptic transmission, plasticity and memory. Sci Rep 5:15862PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Callewaere C, Banisadr G, Rostene W, Parsadaniantz SM (2007) Chemokines and chemokine receptors in the brain: implication in neuroendocrine regulation. J Mol Endocrinol 38:355–363PubMedCrossRefPubMedCentralGoogle Scholar
  167. 167.
    Li M, Hale JS, Rich JN, Ransohoff RM, Lathia JD (2012) Chemokine CXCL12 in neurodegenerative diseases: a S.O.S signal for stem cell-based repair. Trends Neurosci 35:619–628PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Biber K, Vinet J, Boddeke HWGM (2008) Neuron-microglia signaling: chemokines as versatile messengers. J Neuroimmunol 198:69–74PubMedCrossRefPubMedCentralGoogle Scholar
  169. 169.
    Eyre HA, Air T, Pradhan A, Johnston J, Lavretsky H, Stuart MJ, Baune BT (2016) A meta-analysis of chemokines in major depression. Prog Neuro Psychopharmacol Biol Psychiatry 68:1–8CrossRefGoogle Scholar
  170. 170.
    Kohler CA, Freitas TH, Maes M, de Andrade NQ, Liu CS, Fernandes BS, Stubbs B, Solmi M, Veronese N, Herrmann N, Raison CL, Miller BJ, Lanctot KL, Carvalho AF (2017) Peripheral cytokine and chemokine alterations in depression: a meta-analysis of 82 studies. Acta Psychiatr Scand 135:373–387PubMedCrossRefPubMedCentralGoogle Scholar
  171. 171.
    Lehto SM, Niskanen L, Herzig KH, Tolmunen T, Huotari A, Viinamaki H, Koivumaa-Honkanen H, Honkalampi K, Ruotsalainen H, Hintikka J (2010) Serum chemokine levels in major depressive disorder. Psychoneuroendocrinology 35:226–232PubMedCrossRefPubMedCentralGoogle Scholar
  172. 172.
    Baune BT, Smith E, Reppermund S, Air T, Samaras K, Lux O, Brodaty H, Sachdev P, Trollor JN (2012) Inflammatory biomarkers predict depressive, but not anxiety symptoms during aging: the prospective Sydney Memory and Aging Study. Psychoneuroendocrinology 37:1521–1530PubMedCrossRefPubMedCentralGoogle Scholar
  173. 173.
    Leighton SP, Nerurkar L, Krishnadas R, Johnman C, Graham GJ, Cavanagh J (2017) Chemokines in depression in health and in inflammatory illness: a systematic review and meta-analysis. Mol Psychiatry 23:48PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Grassi-Oliveira R, Brieztke E, Teixeira A, Pezzi JC, Zanini M, Lopes RP, Bauer ME (2012) Peripheral chemokine levels in women with recurrent major depression with suicidal ideation. Revista Brasileira de Psiquiatria 1999(34):71–75CrossRefGoogle Scholar
  175. 175.
    Merendino RA, Di Pasquale G, De Luca F, Di Pasquale L, Ferlazzo E, Martino G, Palumbo MC, Morabito F, Gangemi S (2004) Involvement of fractalkine and macrophage inflammatory protein-1 alpha in moderate-severe depression. Mediators Inflamm 13:205–207PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Eller T, Vasar V, Shlik J, Maron E (2009) Effects of bupropion augmentation on pro-inflammatory cytokines in escitalopram-resistant patients with major depressive disorder. J Psychopharmacol 23:854–858PubMedCrossRefPubMedCentralGoogle Scholar
  177. 177.
    Kruse JL, Congdon E, Olmstead R, Njau S, Breen EC, Narr KL, Espinoza R, Irwin MR (2018) Inflammation and improvement of depression following electroconvulsive therapy in treatment-resistant depression. J Clin Psychiatry 79:pii: 17m11597CrossRefGoogle Scholar
  178. 178.
    Kiraly DD, Horn SR, Van Dam NT, Costi S, Schwartz J, Kim-Schulze S, Patel M, Hodes GE, Russo SJ, Merad M, Iosifescu DV, Charney DS, Murrough JW (2017) Altered peripheral immune profiles in treatment-resistant depression: response to ketamine and prediction of treatment outcome. Transl Psychiatry 7:e1065PubMedPubMedCentralCrossRefGoogle Scholar
  179. 179.
    Eklund CM (2009) Proinflammatory cytokines in CRP baseline regulation. Adv Clin Chem 48:111–136PubMedCrossRefPubMedCentralGoogle Scholar
  180. 180.
    Pepys MB, Hirschfield GM (2003) C-reactive protein: a critical update. J Clin Investig 111:1805–1812PubMedCrossRefGoogle Scholar
  181. 181.
    Bassuk SS, Rifai N, Ridker PM (2004) High-sensitivity C-reactive protein: clinical importance. Curr Probl Cardiol 29:439–493PubMedGoogle Scholar
  182. 182.
    Pearson TA, Mensah GA, Alexander RW, Anderson JL, Cannon RO III, Criqui M, Fadl YY, Fortmann SP, Hong Y, Myers GL, Rifai N, Smith SC Jr, Taubert K, Tracy RP, Vinicor F (2003) Markers of inflammation and cardiovascular disease: application to clinical and public health practice: a statement for healthcare professionals from the Centers for Disease Control and Prevention and the American Heart Association. Circulation 107:499–511PubMedCrossRefGoogle Scholar
  183. 183.
    Wium-Andersen MK, Orsted DD, Nielsen SF, Nordestgaard BG (2013) Elevated C-reactive protein levels, psychological distress, and depression in 73131 individuals. JAMA Psychiat 70:176–184CrossRefGoogle Scholar
  184. 184.
    Liukkonen T, Silvennoinen-Kassinen S, Jokelainen J, Rasanen P, Leinonen M, Meyer-Rochow VB, Timonen M (2006) The association between C-reactive protein levels and depression: results from the northern Finland 1966 birth cohort study. Biol Psychiatry 60:825–830PubMedCrossRefGoogle Scholar
  185. 185.
    Danner M, Kasl SV, Abramson JL, Vaccarino V (2003) Association between depression and elevated C-reactive protein. Psychosom Med 65:347–356PubMedCrossRefGoogle Scholar
  186. 186.
    Elovainio M, Aalto AM, Kivimaki M, Pirkola S, Sundvall J, Lonnqvist J, Reunanen A (2009) Depression and C-reactive protein: population-based Health 2000 study. Psychosom Med 71:423–430PubMedCrossRefPubMedCentralGoogle Scholar
  187. 187.
    Bjerkeset O, Romild U, Smith GD, Hveem K (2011) The associations of high levels of C-reactive protein with depression and myocardial infarction in 9258 women and men from the HUNT population study. Psychol Med 41:345–352PubMedCrossRefPubMedCentralGoogle Scholar
  188. 188.
    Raison CL, Pikalov A, Siu C, Tsai J, Koblan K, Loebel A (2018) C-reactive protein and response to lurasidone in patients with bipolar depression. Brain, behavior, and immunity 73:717PubMedCrossRefPubMedCentralGoogle Scholar
  189. 189.
    Cepeda MS, Stang P, Makadia R (2016) Depression is associated with high levels of c-reactive protein and low levels of fractional exhaled nitric oxide: results from the 2007-2012 national health and nutrition examination surveys. J Clin Psychiatry 77:1666–1671PubMedCrossRefPubMedCentralGoogle Scholar
  190. 190.
    Haapakoski R, Mathieu J, Ebmeier KP, Alenius H, Kivimaki M (2015) Cumulative meta-analysis of interleukins 6 and 1beta, tumour necrosis factor alpha and C-reactive protein in patients with major depressive disorder. Brain Behav Immun 49:206–215PubMedPubMedCentralCrossRefGoogle Scholar
  191. 191.
    Wieck A, Andersen SL, Brenhouse HC (2013) Evidence for a neuroinflammatory mechanism in delayed effects of early life adversity in rats: relationship to cortical NMDA receptor expression. Brain Behav Immun 28:218–226PubMedCrossRefPubMedCentralGoogle Scholar
  192. 192.
    Mutlu O, Gumuslu E, Ulak G, Celikyurt IK, Kokturk S, Kır HM, Akar F, Erden F (2012) Effects of fluoxetine, tianeptine and olanzapine on unpredictable chronic mild stress-induced depression-like behavior in mice. Life Sci 91:1252–1262PubMedCrossRefPubMedCentralGoogle Scholar
  193. 193.
    Hanke ML, Powell ND, Stiner LM, Bailey MT, Sheridan JF (2012) Beta adrenergic blockade decreases the immunomodulatory effects of social disruption stress. Brain Behav Immun 26:1150–1159PubMedPubMedCentralCrossRefGoogle Scholar
  194. 194.
    Carboni L, Becchi S, Piubelli C, Mallei A, Giambelli R, Razzoli M, Mathé AA, Popoli M, Domenici E (2010) Early-life stress and antidepressants modulate peripheral biomarkers in a gene–environment rat model of depression. Prog Neuro Psychopharmacol Biol Psychiatry 34:1037–1048CrossRefGoogle Scholar
  195. 195.
    Song C, Zhang XY, Manku M (2009) Increased phospholipase A2 activity and inflammatory response but decreased nerve growth factor expression in the olfactory bulbectomized rat model of depression: effects of chronic ethyl-eicosapentaenoate treatment. J Neurosci 29:14–22PubMedCrossRefPubMedCentralGoogle Scholar
  196. 196.
    Krishnan V, Nestler EJ (2011) Animal models of depression: molecular perspectives. Curr Top Behav Neurosci 7:121–147PubMedPubMedCentralCrossRefGoogle Scholar
  197. 197.
    Murgatroyd C, Quinn JP, Sharp HM, Pickles A, Hill J (2015) Effects of prenatal and postnatal depression, and maternal stroking, at the glucocorticoid receptor gene. Transl Psychiatry 5:e560PubMedPubMedCentralCrossRefGoogle Scholar
  198. 198.
    Fumagalli F, Bedogni F, Perez J, Racagni G, Riva MA (2004) Corticostriatal brain-derived neurotrophic factor dysregulation in adult rats following prenatal stress. Eur J Neurosci 20:1348–1354PubMedCrossRefPubMedCentralGoogle Scholar
  199. 199.
    Diz-Chaves Y, Pernia O, Carrero P, Garcia-Segura LM (2012) Prenatal stress causes alterations in the morphology of microglia and the inflammatory response of the hippocampus of adult female mice. J Neuroinflammation 9:71PubMedPubMedCentralCrossRefGoogle Scholar
  200. 200.
    Brenes Saenz JC, Villagra OR, Fornaguera Trias J (2006) Factor analysis of forced swimming test, sucrose preference test and open field test on enriched, social and isolated reared rats. Behav Brain Res 169:57–65PubMedCrossRefPubMedCentralGoogle Scholar
  201. 201.
    Anisman H, Merali Z (2001) Rodent models of depression: learned helplessness induced in mice. Curr Protoc Neurosci Chapter 8:Unit 8.10CPubMedPubMedCentralGoogle Scholar
  202. 202.
    Landgraf D, Long J, Der-Avakian A, Streets M, Welsh DK (2015) Dissociation of learned helplessness and fear conditioning in mice: a mouse model of depression. PLoS One 10:e0125892PubMedPubMedCentralCrossRefGoogle Scholar
  203. 203.
    Willner P (2017) The chronic mild stress (CMS) model of depression: history, evaluation and usage. Neurobiol Stress 6:78–93PubMedCrossRefPubMedCentralGoogle Scholar
  204. 204.
    Nollet M, Le Guisquet AM, Belzung C (2013) Models of depression: unpredictable chronic mild stress in mice. Curr Protoc Pharmacol Chapter 5:Unit 5.65PubMedPubMedCentralGoogle Scholar
  205. 205.
    Stepanichev M, Dygalo NN, Grigoryan G, Shishkina GT, Gulyaeva N (2014) Rodent models of depression: neurotrophic and neuroinflammatory biomarkers. Biomed Res Int 2014:932757PubMedPubMedCentralCrossRefGoogle Scholar
  206. 206.
    Golden SA, Covington HE III, Berton O, Russo SJ (2011) A standardized protocol for repeated social defeat stress in mice. Nat Protoc 6:1183–1191PubMedPubMedCentralCrossRefGoogle Scholar
  207. 207.
    Remus JL, Dantzer R (2016) Inflammation models of depression in rodents: relevance to psychotropic drug discovery. Int J Neuropsychopharmacol 19:pii: pyw028CrossRefGoogle Scholar
  208. 208.
    Dantzer R (2006) Cytokine, sickness behavior, and depression. Neurol Clin 24:441–460PubMedPubMedCentralCrossRefGoogle Scholar
  209. 209.
    O’Connor JC, Lawson MA, Andre C, Moreau M, Lestage J, Castanon N, Kelley KW, Dantzer R (2009) Lipopolysaccharide-induced depressive-like behavior is mediated by indoleamine 2,3-dioxygenase activation in mice. Mol Psychiatry 14:511–522PubMedCrossRefPubMedCentralGoogle Scholar
  210. 210.
    Laumet G, Edralin JD, Chiang AC-A, Dantzer R, Heijnen CJ, Kavelaars A (2018) Resolution of inflammation-induced depression requires T lymphocytes and endogenous brain interleukin-10 signaling. Neuropsychopharmacology 43:2597PubMedCrossRefPubMedCentralGoogle Scholar
  211. 211.
    Goshen I, Kreisel T, Ben-Menachem-Zidon O, Licht T, Weidenfeld J, Ben-Hur T, Yirmiya R (2008) Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol Psychiatry 13:717–728PubMedCrossRefPubMedCentralGoogle Scholar
  212. 212.
    Koo JW, Russo SJ, Ferguson D, Nestler EJ, Duman RS (2010) Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proc Natl Acad Sci U S A 107:2669–2674PubMedPubMedCentralCrossRefGoogle Scholar
  213. 213.
    Sukoff Rizzo SJ, Neal SJ, Hughes ZA, Beyna M, Rosenzweig-Lipson S, Moss SJ, Brandon NJ (2012) Evidence for sustained elevation of IL-6 in the CNS as a key contributor of depressive-like phenotypes. Transl Psychiatry 2:e199PubMedPubMedCentralCrossRefGoogle Scholar
  214. 214.
    Henry CJ, Huang Y, Wynne A, Hanke M, Himler J, Bailey MT, Sheridan JF, Godbout JP (2008) Minocycline attenuates lipopolysaccharide (LPS)-induced neuroinflammation, sickness behavior, and anhedonia. J Neuroinflammation 5:15PubMedPubMedCentralCrossRefGoogle Scholar
  215. 215.
    McKim DB, Niraula A, Tarr AJ, Wohleb ES, Sheridan JF, Godbout JP (2016) Neuroinflammatory dynamics underlie memory impairments after repeated social defeat. J Neurosci 36:2590PubMedPubMedCentralCrossRefGoogle Scholar
  216. 216.
    De La Garza R II, Asnis GM (2003) The non-steroidal anti-inflammatory drug diclofenac sodium attenuates IFN-alpha induced alterations to monoamine turnover in prefrontal cortex and hippocampus. Brain Res 977:70–79CrossRefGoogle Scholar
  217. 217.
    Fischer CW, Eskelund A, Budac DP, Tillmann S, Liebenberg N, Elfving B, Wegener G (2015) Interferon-alpha treatment induces depression-like behaviour accompanied by elevated hippocampal quinolinic acid levels in rats. Behav Brain Res 293:166–172PubMedCrossRefPubMedCentralGoogle Scholar
  218. 218.
    Karson A, Demirtas T, Bayramgurler D, Balci F, Utkan T (2013) Chronic administration of infliximab (TNF-alpha inhibitor) decreases depression and anxiety-like behaviour in rat model of chronic mild stress. Basic Clin Pharmacol Toxicol 112:335–340PubMedCrossRefPubMedCentralGoogle Scholar
  219. 219.
    Rush AJ, Trivedi MH, Wisniewski SR, Nierenberg AA, Stewart JW, Warden D, Niederehe G, Thase ME, Lavori PW, Lebowitz BD, McGrath PJ, Rosenbaum JF, Sackeim HA, Kupfer DJ, Luther J, Fava M (2006) Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: a STAR∗D report. Am J Psychiatry 163:1905–1917PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • J. P. Brás
    • 1
    • 2
    • 3
  • S. Pinto
    • 1
    • 4
    • 5
  • M. I. Almeida
    • 1
    • 2
  • J. Prata
    • 1
    • 4
    • 6
  • O. von Doellinger
    • 1
    • 4
    • 7
  • R. Coelho
    • 1
    • 4
    • 5
  • M. A. Barbosa
    • 1
    • 2
    • 3
  • S. G. Santos
    • 1
    • 2
    • 3
    Email author
  1. 1.i3S-Instituto de Investigação e Inovação em SaúdeUniversity of PortoPortoPortugal
  2. 2.INEB-Instituto de Engenharia BiomédicaUniversity of PortoPortoPortugal
  3. 3.ICBAS-Instituto de Ciências Biomédicas Abel SalazarUniversity of PortoPortoPortugal
  4. 4.FMUP-Faculty of MedicineUniversity of PortoPortoPortugal
  5. 5.Department of Clinical Neurosciences and Mental HealthCentro Hospitalar Universitário São JoãoPortoPortugal
  6. 6.Department of Psychiatry and Mental HealthCentro Hospitalar Vila Nova de Gaia/EspinhoVila Nova de GaiaPortugal
  7. 7.Department of Psychiatry and Mental HealthCentro Hospitalar do Tâmega e SousaPenafielPortugal

Personalised recommendations