Methods for Evaluating the Interaction Between Social Stress and Environmental Enrichment in Animal Models of Nicotine Addiction

  • Patricia Mesa-GresaEmail author
  • Aránzazu Duque
  • Santiago Monleón
  • Concepción Vinader-Caerols
  • Rosa Redolat
Part of the Methods in Molecular Biology book series (MIMB, volume 2011)


The environmental enrichment (EE) paradigm has been evaluated as a means of counteracting some of the consequences of chronic stress in rodents as well as a model of protective environment against drug abuse development. In the present chapter, our main aim is to describe the models of EE and chronic social stress and how they can be applied jointly in order to evaluate the effects of early psychosocial stress in animals exposed of different environments (enriched environment or standard environment). Furthermore, both paradigms could be applied in animal models of nicotine addiction, so the guidelines for the application of a chronic oral nicotine treatment in mice will be described. The heterogeneity of the procedures carried out in different laboratories makes it interesting to specify their characteristics in order to obtain replicable and valid animal models.

Key words

Animal model Environmental enrichment Chronic social stress Nicotine Addiction Rats Mice 



This work was supported by grants from “Ministerio de Economía y Competitividad (MINECO)” (Grant numbers: PSI2009-10410 and PSI2016-78763-P) and “Conselleria d’Educació i Ciència” from Generalitat Valenciana (Spain) (GVACOMP2010-273, PROMETEO/2011/048 and PROMETEOII/2015/020).


  1. 1.
    Savignac HM, Hyland NP, Dinan TG, Cryan JF (2011) The effects of repeated social interaction stress on behavioural and physiological parameters in a stress-sensitive mouse strain. Behav Brain Res 216:576–584CrossRefGoogle Scholar
  2. 2.
    de Boer SF, Buwalda B, Koolhaas JM (2017) Untangling the neurobiology of coping styles in rodents: towards neural mechanisms underlying individual differences in disease susceptibility. Neurosci Biobehav Rev 74.(Pt B:401–422CrossRefGoogle Scholar
  3. 3.
    Bahi A (2017) Environmental enrichment reduces chronic psychosocial stress-induced anxiety and ethanol-related behaviors in mice. Prog Neuro-Psychopharmacol Biol Psychiatry 77:65–74CrossRefGoogle Scholar
  4. 4.
    Sterlemann V, Ganea K, Liebl C, Harbich D, Alam S, Holsboer F, Müller MB, Schmidt MV (2008) Long-term behavioral and neuroendocrine alterations following chronic social stress in mice: implications for stress-related disorders. Horm Behav 53:386–394CrossRefGoogle Scholar
  5. 5.
    de Lima APN, Massoco CO (2017) Passive adaptation to stress in adulthood after short-term social instability stress during adolescence in mice. Stress 20:329–332CrossRefGoogle Scholar
  6. 6.
    Schmidt MV, Sterlemann V, Muller MB (2008) Chronic stress and individual vulnerability. Ann N Y Acad Sci 1148:174–183CrossRefGoogle Scholar
  7. 7.
    McEwen BS (2017) Redefining neuroendocrinology: epigenetics of brain-body communication over the life course. Front Neuroendocrinol. pii: S0091-3022(17)30068-7Google Scholar
  8. 8.
    Schmidt MV, Wang XD, Meijer OC (2010) Early life stress paradigms in rodents: potential animal models of depression? Psychopharmacology 214:131–140CrossRefGoogle Scholar
  9. 9.
    McCormick CM, Green MR, Simone JJ (2017) Translational relevance of rodent models of hypothalamic-pituitary-adrenal function and stressors in adolescence. Neurobiol Stress 6:31–43CrossRefGoogle Scholar
  10. 10.
    Koolhaas JM, de Boer SF, Coppens CM, Buwalda B (2010) Neuroendocrinology of coping styles: towards understanding the biology of individual variation. Front Neuroendocrinol 31:307–321CrossRefGoogle Scholar
  11. 11.
    Schmidt MV, Sterlemann V, Ganea K, Liebl C, Alam S, Harbich D, Greetfeld M, Uhr M, Holsboer F, Müller MB (2007) Persistent neuroendocrine and behavioral effects of a novel, etiologically relevant mouse paradigm for chronic social stress during adolescence. Psychoneuroendocrinology 32:417–429CrossRefGoogle Scholar
  12. 12.
    Toth LA (2015) The influence of the cage environment on rodent physiology and behavior: Implications for reproducibility of pre-clinical rodent research. Exp Neurol 270:72–77CrossRefGoogle Scholar
  13. 13.
    Sale A (2018) A systematic look at environmental modulation and its impact in brain development. Trends Neurosci 41:4–17CrossRefGoogle Scholar
  14. 14.
    Redolat R, Mesa-Gresa P (2012) Potential benefits and limitations of enriched environments and cognitive activity on age-related behavioural decline. In: Pardon M, Bondi E (eds) Neurobiology of aging, vol 10. Springer, New York, pp 293–316CrossRefGoogle Scholar
  15. 15.
    Hannan AJ (2014) Environmental enrichment and brain repair: harnessing the therapeutic effects of cognitive stimulation and physical activity to enhance experience-dependent plasticity. Neuropathol Appl Neurobiol 40:13–25CrossRefGoogle Scholar
  16. 16.
    Garthe A, Roeder I, Kempermann G (2016) Mice in an enriched environment learn more flexibly because of adult hippocampal neurogenesis. Hippocampus 26:261–271CrossRefGoogle Scholar
  17. 17.
    Kobilo T, Liu QR, Gandhi K, Mughal M, Shaham Y, van Praag H (2011) Running is the neurogenic and neurotrophic stimulus in environmental enrichment. Learn Mem 18:605–609CrossRefGoogle Scholar
  18. 18.
    Rogers J, Renoir T, Hannan AJ (2017) Gene-environment interactions informing therapeutic approaches to cognitive and affective disorders. Neuropharmacology. pii: S0028-3908(17)30636-6Google Scholar
  19. 19.
    Smith BL, Morano RL, Ulrich-Lai YM, Myers B, Solomon MB, Herman JP (2018) Adolescent environmental enrichment prevents behavioral and physiological sequelae of adolescent chronic stress in female (but not male) rats. Stress 21(5):464–473CrossRefGoogle Scholar
  20. 20.
    Normann MC, McNeal N, Dagner A, Ihm E, Woodbury M, Grippo AJ (2018) The influence of environmental enrichment on eardiovascular and behavioral responses to social stress. Psychosom Med 80(3):271–277CrossRefGoogle Scholar
  21. 21.
    Hendriksen H, Prins J, Olivier B, Oosting RS (2010) Environmental enrichment induces behavioral recovery and enhanced hippocampal cell proliferation in an antidepressant-resistant animal model for PTSD. PLoS One 5:e11943CrossRefGoogle Scholar
  22. 22.
    Solinas M, Chauvet C, Thiriet N, El Rawas R, Jaber M (2008) Reversal of cocaine addiction by environmental enrichment. Proc Natl Acad Sci U S A 105:17145–17150CrossRefGoogle Scholar
  23. 23.
    Sikora M, Nicolas C, Istin M, Jaafari N, Thiriet N, Solinas M (2018) Generalization of effects of environmental enrichment on seeking for different classes of drugs of abuse. Behav Brain Res 341:109–113CrossRefGoogle Scholar
  24. 24.
    Mesa-Gresa P, Pérez-Martinez A, Redolat R (2013) Behavioral effects of combined environmental enrichment and chronic nicotine administration in male NMRI mice. Physiol Behav 114-115:65–76CrossRefGoogle Scholar
  25. 25.
    Nawaz A, Batool Z, Ahmed S, Tabassum S, Khaliq S, Mehdi BJ, Sajid I, Ahmad S, Saleem S, Naqvi F, Naqvi F, Haider S (2017) Enriched environment palliates nicotine-induced addiction and associated neurobehavioral deficits in rats. Pak J Pharm Sci 30:2375–2381PubMedGoogle Scholar
  26. 26.
    Sztainberg Y, Chen A (2010) An environmental enrichment model for mice. Nat Protoc 5:1535–1539CrossRefGoogle Scholar
  27. 27.
    Mesa-Gresa P, Ramos-Campos M, Redolat R (2016) Corticosterone levels and behavioral changes induced by simultaneous exposure to chronic social stress and enriched environments in NMRI male mice. Physiol Behav 158:6–17CrossRefGoogle Scholar
  28. 28.
    Pryce CR, Fuchs E (2016) Chronic psychosocial stressors in adulthood: studies in mice, rats and tree shrews. Neurobiol Stress 6:94–103CrossRefGoogle Scholar
  29. 29.
    Gelfo F, Mandolesi L, Serra L, Sorrentino G, Caltagirone C (2017) The neuroprotective effects of experience on cognitive functions: evidence from animal studies on the neurobiological bases of brain reserve. Neuroscience S0306-4522(17):30551–30551Google Scholar
  30. 30.
    Santarelli S, Zimmermann C, Kalideris G, Lesuis SL, Arloth J, Uribe A, Dournes C, Balsevich G, Hartmann J, Masana M, Binder EB, Spengler D, Schmidt MV (2017) An adverse early life environment can enhance stress resilience in adulthood. Psychoneuroendocrinology 78:213–221CrossRefGoogle Scholar
  31. 31.
    Koolhaas JM, de Boer SF, Buwalda B, Meerlo P (2017) Social stress models in rodents: towards enhanced validity. Neurobiol Stress 6:104–112CrossRefGoogle Scholar
  32. 32.
    Labaka A, Gómez-Lázaro E, Vegas O, Pérez-Tejada J, Arregi A, Garmendia L (2017) Reduced hippocampal IL-10 expression, altered monoaminergic activity and anxiety and depressive-like behavior in female mice subjected to chronic social instability stress. Behav Brain Res 335:8–18CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Patricia Mesa-Gresa
    • 1
    Email author
  • Aránzazu Duque
    • 2
  • Santiago Monleón
    • 1
  • Concepción Vinader-Caerols
    • 1
  • Rosa Redolat
    • 1
  1. 1.Department of PsychobiologyUniversity of ValenciaValenciaSpain
  2. 2.Universidad Internacional de ValenciaValenciaSpain

Personalised recommendations