Rodent Models of Methamphetamine Misuse: Mechanisms of Methamphetamine Action and Comparison of Different Rodent Paradigms

  • Hiba Hasan
  • Samar Abdelhady
  • Muhammad Haidar
  • Christina Fakih
  • Samer El Hayek
  • Stefania Mondello
  • Firas H. Kobeissy
  • Abdullah Shaito
Part of the Methods in Molecular Biology book series (MIMB, volume 2011)


Methamphetamine (METH) is among the most widely used illegal forms of amphetamine. Whether it is injected, snorted, or smoked, METH is a highly addictive substance that affects both peripheral and central nervous system actions. METH use ranges from episodes of binge to chronic use. To investigate METH effects, several animal models have been developed and described to model the various patterns of human METH use. In this work, we examine the molecular, cellular, and structural mechanisms of METH use. Then, we describe the different animal models of METH misuse. Next, we discuss, in details, the acute exposure model which assesses the immediate effects of METH on the brain and the chronic exposure model which best describes the more common long-term consequences of METH use observed in humans. Finally, we tackle the effects and consequences of each paradigm and focus on METH-induced neurotoxic effects and the behavioral changes attributed to each of the described paradigms.

Key words

Methamphetamine Rodent models Acute Chronic Self-administration Binge Escalating Neurotoxicity Behavioral consequences 


  1. 1.
    Gold MS, Kobeissy FH, Wang KK, Merlo LJ, Bruijnzeel AW, Krasnova IN, Cadet JL (2009) Methamphetamine- and trauma-induced brain injuries: comparative cellular and molecular neurobiological substrates. Biol Psychiatry 66:118–127PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    UNODC (2016) United Nations Office on Drugs and Crime, World drug report 2016. UN, GenevaGoogle Scholar
  3. 3.
    Vearrier D, Greenberg MI, Miller SN, Okaneku JT, Haggerty DA (2012) Methamphetamine: history, pathophysiology, adverse health effects, current trends, and hazards associated with the clandestine manufacture of methamphetamine. Dis Mon 58:38–89PubMedCrossRefGoogle Scholar
  4. 4.
    Cadet JL, Gold M (2017) Methamphetamine-induced psychosis: who says all drug use is reversible? Curr Psychiatr Ther 16:14–20Google Scholar
  5. 5.
    SAMHSA (2013) Results from the 2013 National Survey on Drug Use and Health: Summary of National Findings. NSDUH Series H-48, HHS Publication No. (SMA) 14-4863. SAMHSA, Rockville, MDGoogle Scholar
  6. 6.
    Nicosia N, Pacula RL, Kilmer B, Lundberg R, Chiesa J (2009) The economic cost of methamphetamine use in the United States, 2005. Rand Health, Santa Monica, CACrossRefGoogle Scholar
  7. 7.
    Rawson RA, Anglin MD, Ling W (2002) Will the methamphetamine problem go away? J Addict Dis 21:5–19PubMedCrossRefGoogle Scholar
  8. 8.
    Shukla RK, Crump JL, Chrisco ES (2012) An evolving problem: methamphetamine production and trafficking in the United States. Int J Drug Policy 23:426–435PubMedCrossRefGoogle Scholar
  9. 9.
    Yu S, Zhu L, Shen Q, Bai X, Di X (2015) Recent advances in methamphetamine neurotoxicity mechanisms and its molecular pathophysiology. Behav Neurol 2015:103969PubMedPubMedCentralGoogle Scholar
  10. 10.
    Cadet JL, Jayanthi S, Deng X (2003) Speed kills: cellular and molecular bases of methamphetamine-induced nerve terminal degeneration and neuronal apoptosis. FASEB J 17:1775–1788PubMedCrossRefGoogle Scholar
  11. 11.
    Anglin MD, Burke C, Perrochet B, Stamper E, Dawud-Noursi S (2000) History of the methamphetamine problem. J Psychoactive Drugs 32:137–141PubMedCrossRefGoogle Scholar
  12. 12.
    Rasmussen N (2008) America’s first amphetamine epidemic 1929–1971: a quantitative and qualitative retrospective with implications for the present. Am J Public Health 98:974–985PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Wada K (2011) The history and current state of drug abuse in Japan. Ann N Y Acad Sci 1216:62–72PubMedCrossRefGoogle Scholar
  14. 14.
    Kish SJ (2008) Pharmacologic mechanisms of crystal meth. CMAJ 178:1679–1682PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Moszczynska A, Callan SP (2017) Molecular, behavioral, and physiological consequences of methamphetamine neurotoxicity: implications for treatment. J Pharmacol Exp Ther 362:474–488PubMedCrossRefGoogle Scholar
  16. 16.
    Boeri MW, Tyndall BD, Woodall DR (2011) Suburban poverty: barriers to services and injury prevention among marginalized women who use methamphetamine. West J Emerg Med 12:284–292PubMedPubMedCentralGoogle Scholar
  17. 17.
    Dargan PI, Wood DM (2012) Recreational drug use in the Asia Pacific region: improvement in our understanding of the problem through the UNODC programmes. J Med Toxicol 8:295–299PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Kogan FJ, Nichols WK, Gibb JW (1976) Influence of methamphetamine on nigral and striatal tyrosine hydroxylase activity and on striatal dopamine levels. Eur J Pharmacol 36:363–371PubMedCrossRefGoogle Scholar
  19. 19.
    Seiden LS, Fischman MW, Schuster CR (1976) Long-term methamphetamine induced changes in brain catecholamines in tolerant rhesus monkeys. Drug Alcohol Depend 1:215–219PubMedCrossRefGoogle Scholar
  20. 20.
    Wagner GC, Seiden LS, Schuster CR (1979) Methamphetamine-induced changes in brain catecholamines in rats and guinea pigs. Drug Alcohol Depend 4:435–438PubMedCrossRefGoogle Scholar
  21. 21.
    Finnegan KT, Ricaurte G, Seiden LS, Schuster CR (1982) Altered sensitivity to d-methylamphetamine, apomorphine, and haloperidol in rhesus monkeys depleted of caudate dopamine by repeated administration of d-methylamphetamine. Psychopharmacology 77:43–52PubMedCrossRefGoogle Scholar
  22. 22.
    Preston KL, Wagner GC, Schuster CR, Seiden LS (1985) Long-term effects of repeated methylamphetamine administration on monoamine neurons in the rhesus monkey brain. Brain Res 338:243–248PubMedCrossRefGoogle Scholar
  23. 23.
    Howard CD, Keefe KA, Garris PA, Daberkow DP (2011) Methamphetamine neurotoxicity decreases phasic, but not tonic, dopaminergic signaling in the rat striatum. J Neurochem 118:668–676PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Morrow BA, Roth RH, Redmond DE, Elsworth JD (2011) Impact of methamphetamine on dopamine neurons in primates is dependent on age: implications for development of Parkinson’s disease. Neuroscience 189:277–285PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Trulson ME, Cannon MS, Faegg TS, Raese JD (1985) Effects of chronic methamphetamine on the nigral-striatal dopamine system in rat brain: tyrosine hydroxylase immunochemistry and quantitative light microscopic studies. Brain Res Bull 15:569–577PubMedCrossRefGoogle Scholar
  26. 26.
    Lee KN, Pellom ST, Oliver E, Chirwa S (2014) Characterization of the guinea pig animal model and subsequent comparison of the behavioral effects of selective dopaminergic drugs and methamphetamine. Synapse 68:221–233PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Motzkin JC, Baskin-Sommers A, Newman JP, Kiehl KA, Koenigs M (2014) Neural correlates of substance abuse: reduced functional connectivity between areas underlying reward and cognitive control. Hum Brain Mapp 35:4282–4292PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Wee S, Koob GF (2010) The role of the dynorphin-kappa opioid system in the reinforcing effects of drugs of abuse. Psychopharmacology 210:121–135PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hyman SE, Malenka RC, Nestler EJ (2006) Neural mechanisms of addiction: the role of reward-related learning and memory. Annu Rev Neurosci 29:565–598PubMedCrossRefPubMedCentralGoogle Scholar
  31. 31.
    Nestler EJ (2005) Is there a common molecular pathway for addiction? Nat Neurosci 8:1445–1449PubMedCrossRefGoogle Scholar
  32. 32.
    Kerner B (2009) Glutamate neurotransmission in psychotic disorders and substance abuse. Open Psychiatr J 3:1–8PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Cruickshank CC, Dyer KR (2009) A review of the clinical pharmacology of methamphetamine. Addiction 104:1085–1099PubMedCrossRefGoogle Scholar
  34. 34.
    Cadet JL, Krasnova IN, Jayanthi S, Lyles J (2007) Neurotoxicity of substituted amphetamines: molecular and cellular mechanisms. Neurotox Res 11:183–202PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Krasnova IN, Cadet JL (2009) Methamphetamine toxicity and messengers of death. Brain Res Rev 60:379–407PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Wilson JM, Kalasinsky KS, Levey AI, Bergeron C, Reiber G, Anthony RM, Schmunk GA, Shannak K, Haycock JW, Kish SJ (1996) Striatal dopamine nerve terminal markers in human, chronic methamphetamine users. Nat Med 2:699–703PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Volkow ND, Chang L, Wang GJ, Fowler JS, Leonido-Yee M, Franceschi D, Sedler MJ, Gatley SJ, Hitzemann R, Ding YS, Logan J, Wong C, Miller EN (2001) Association of dopamine transporter reduction with psychomotor impairment in methamphetamine abusers. Am J Psychiatry 158:377–382PubMedCrossRefGoogle Scholar
  38. 38.
    McCann UD, Wong DF, Yokoi F, Villemagne V, Dannals RF, Ricaurte GA (1998) Reduced striatal dopamine transporter density in abstinent methamphetamine and methcathinone users: evidence from positron emission tomography studies with [11C]WIN-35,428. J Neurosci 18:8417–8422PubMedCrossRefGoogle Scholar
  39. 39.
    Sekine Y, Iyo M, Ouchi Y, Matsunaga T, Tsukada H, Okada H, Yoshikawa E, Futatsubashi M, Takei N, Mori N (2001) Methamphetamine-related psychiatric symptoms and reduced brain dopamine transporters studied with PET. Am J Psychiatry 158:1206–1214PubMedCrossRefGoogle Scholar
  40. 40.
    Sekine Y, Minabe Y, Ouchi Y, Takei N, Iyo M, Nakamura K, Suzuki K, Tsukada H, Okada H, Yoshikawa E, Futatsubashi M, Mori N (2003) Association of dopamine transporter loss in the orbitofrontal and dorsolateral prefrontal cortices with methamphetamine-related psychiatric symptoms. Am J Psychiatry 160:1699–1701PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Volkow ND, Chang L, Wang GJ, Fowler JS, Franceschi D, Sedler M, Gatley SJ, Miller E, Hitzemann R, Ding YS, Logan J (2001) Loss of dopamine transporters in methamphetamine abusers recovers with protracted abstinence. J Neurosci 21:9414–9418PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Volkow ND, Wang GJ, Smith L, Fowler JS, Telang F, Logan J, Tomasi D (2015) Recovery of dopamine transporters with methamphetamine detoxification is not linked to changes in dopamine release. NeuroImage 121:20–28PubMedCrossRefGoogle Scholar
  43. 43.
    Koob GF (2013) Negative reinforcement in drug addiction: the darkness within. Curr Opin Neurobiol 23:559–563PubMedCrossRefPubMedCentralGoogle Scholar
  44. 44.
    Kalivas PW, Volkow ND (2011) New medications for drug addiction hiding in glutamatergic neuroplasticity. Mol Psychiatry 16:974–986PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Suska A, Lee BR, Huang YH, Dong Y, Schluter OM (2013) Selective presynaptic enhancement of the prefrontal cortex to nucleus accumbens pathway by cocaine. Proc Natl Acad Sci U S A 110:713–718PubMedCrossRefGoogle Scholar
  46. 46.
    Kalivas PW (2009) The glutamate homeostasis hypothesis of addiction. Nat Rev Neurosci 10:561–572PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Hinzman JM, Thomas TC, Quintero JE, Gerhardt GA, Lifshitz J (2012) Disruptions in the regulation of extracellular glutamate by neurons and glia in the rat striatum two days after diffuse brain injury. J Neurotrauma 29:1197–1208PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Fonseca R, Carvalho RA, Lemos C, Sequeira AC, Pita IR, Carvalho F, Silva CD, Prediger RD, Jarak I, Cunha RA, Fontes Ribeiro CA, Kofalvi A, Pereira FC (2017) Methamphetamine induces anhedonic-like behavior and impairs frontal cortical energetics in mice. CNS Neurosci Ther 23:119–126PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Smith KJ, Butler TR, Prendergast MA (2010) Inhibition of sigma-1 receptor reduces N-methyl-D-aspartate induced neuronal injury in methamphetamine-exposed and -naive hippocampi. Neurosci Lett 481:144–148PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Pu C, Broening HW, Vorhees CV (1996) Effect of methamphetamine on glutamate-positive neurons in the adult and developing rat somatosensory cortex. Synapse 23:328–334PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Sailasuta N, Abulseoud O, Harris KC, Ross BD (2010) Glial dysfunction in abstinent methamphetamine abusers. J Cereb Blood Flow Metab 30:950–960PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Low D, Ginhoux F (2018) Recent advances in the understanding of microglial development and homeostasis. Cell Immunol 330:68–78PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Poskanzer KE, Molofsky AV (2017) Dynamism of an astrocyte in vivo: perspectives on identity and function. Annu Rev Physiol 80:143–157PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Merkel SF, Razmpour R, Lutton EM, Tallarida CS, Heldt NA, Cannella LA, Persidsky Y, Rawls SM, Ramirez SH (2017) Adolescent traumatic brain injury induces chronic mesolimbic neuroinflammation with concurrent enhancement in the rewarding effects of cocaine in mice during adulthood. J Neurotrauma 34:165–181PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Shen H, Harvey BK, Chiang YH, Pick CG, Wang Y (2011) Methamphetamine potentiates behavioral and electrochemical responses after mild traumatic brain injury in mice. Brain Res 1368:248–253PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Merkel SF, Cannella LA, Razmpour R, Lutton E, Raghupathi R, Rawls SM, Ramirez SH (2017) Factors affecting increased risk for substance use disorders following traumatic brain injury: what we can learn from animal models. Neurosci Biobehav Rev 77:209–218PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Graeber MB, Streit WJ (2010) Microglia: biology and pathology. Acta Neuropathol 119:89–105PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Sajja VS, Galloway M, Ghoddoussi F, Kepsel A, VandeVord P (2013) Effects of blast-induced neurotrauma on the nucleus accumbens. J Neurosci Res 91:593–601PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Lowing JL, Susick LL, Caruso JP, Provenzano AM, Raghupathi R, Conti AC (2014) Experimental traumatic brain injury alters ethanol consumption and sensitivity. J Neurotrauma 31:1700–1710PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Goncalves J, Leitao RA, Higuera-Matas A, Assis MA, Coria SM, Fontes-Ribeiro C, Ambrosio E, Silva AP (2017) Extended-access methamphetamine self-administration elicits neuroinflammatory response along with blood-brain barrier breakdown. Brain Behav Immun 62:306–317PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Sun D, Yue Q, Guo W, Li T, Zhang J, Li G, Liu Z, Sun J (2015) Neuroprotection of resveratrol against neurotoxicity induced by methamphetamine in mouse mesencephalic dopaminergic neurons. Biofactors 41:252–260PubMedCrossRefGoogle Scholar
  62. 62.
    Deng X, Cai NS, McCoy MT, Chen W, Trush MA, Cadet JL (2002) Methamphetamine induces apoptosis in an immortalized rat striatal cell line by activating the mitochondrial cell death pathway. Neuropharmacology 42:837–845PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Jayanthi S, Deng X, Noailles PA, Ladenheim B, Cadet JL (2004) Methamphetamine induces neuronal apoptosis via cross-talks between endoplasmic reticulum and mitochondria-dependent death cascades. FASEB J 18:238–251PubMedCrossRefGoogle Scholar
  64. 64.
    Pineda JA, Wang KK, Hayes RL (2004) Biomarkers of proteolytic damage following traumatic brain injury. Brain Pathol 14:202–209PubMedCrossRefPubMedCentralGoogle Scholar
  65. 65.
    Squier MK, Miller AC, Malkinson AM, Cohen JJ (1994) Calpain activation in apoptosis. J Cell Physiol 159:229–237PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Zhang Z, Ottens AK, Sadasivan S, Kobeissy FH, Fang T, Hayes RL, Wang KK (2007) Calpain-mediated collapsin response mediator protein-1, -2, and -4 proteolysis after neurotoxic and traumatic brain injury. J Neurotrauma 24:460–472PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Kobeissy FH, Ottens AK, Zhang Z, Liu MC, Denslow ND, Dave JR, Tortella FC, Hayes RL, Wang KK (2006) Novel differential neuroproteomics analysis of traumatic brain injury in rats. Mol Cell Proteomics 5:1887–1898PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Farkas O, Polgar B, Szekeres-Bartho J, Doczi T, Povlishock JT, Buki A (2005) Spectrin breakdown products in the cerebrospinal fluid in severe head injury--preliminary observations. Acta Neurochir 147:855–861PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Thanos PK, Kim R, Delis F, Ananth M, Chachati G, Rocco MJ, Masad I, Muniz JA, Grant SC, Gold MS, Cadet JL, Volkow ND (2016) Chronic methamphetamine effects on brain structure and function in rats. PLoS One 11:e0155457PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Groman SM, Morales AM, Lee B, London ED, Jentsch JD (2013) Methamphetamine-induced increases in putamen gray matter associate with inhibitory control. Psychopharmacology 229:527–538PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Churchwell JC, Carey PD, Ferrett HL, Stein DJ, Yurgelun-Todd DA (2012) Abnormal striatal circuitry and intensified novelty seeking among adolescents who abuse methamphetamine and cannabis. Dev Neurosci 34:310–317PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Jan RK, Lin JC, Miles SW, Kydd RR, Russell BR (2012) Striatal volume increases in active methamphetamine-dependent individuals and correlation with cognitive performance. Brain Sci 2:553–572PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Moeller S, Huttner HB, Struffert T, Müller HH (2016) Irreversible brain damage caused by methamphetamine: persisting structural brain lesions. Alcohol Drug Addict 29:39–41CrossRefGoogle Scholar
  74. 74.
    Thompson PM, Hayashi KM, Simon SL, Geaga JA, Hong MS, Sui Y, Lee JY, Toga AW, Ling W, London ED (2004) Structural abnormalities in the brains of human subjects who use methamphetamine. J Neurosci 24:6028–6036PubMedCrossRefGoogle Scholar
  75. 75.
    Krimer LS, Muly EC III, Williams GV, Goldman-Rakic PS (1998) Dopaminergic regulation of cerebral cortical microcirculation. Nat Neurosci 1:286–289PubMedCrossRefGoogle Scholar
  76. 76.
    Kousik SM, Napier TC, Ross RD, Sumner DR, Carvey PM (2014) Dopamine receptors and the persistent neurovascular dysregulation induced by methamphetamine self-administration in rats. J Pharmacol Exp Ther 351:432–439PubMedCrossRefGoogle Scholar
  77. 77.
    Chung YA, Peterson BS, Yoon SJ, Cho S-N, Chai S, Jeong J, Kim DJ (2010) In vivo evidence for long-term CNS toxicity, associated with chronic binge use of methamphetamine. Drug Alcohol Depend 111:155–160PubMedCrossRefGoogle Scholar
  78. 78.
    Hwang J, Lyoo IK, Kim SJ, Sung YH, Bae S, Cho SN, Lee HY, Lee DS, Renshaw PF (2006) Decreased cerebral blood flow of the right anterior cingulate cortex in long-term and short-term abstinent methamphetamine users. Drug Alcohol Depend 82:177–181PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    O’Phelan K, Ernst T, Park D, Stenger A, Denny K, Green D, Chang C, Chang L (2013) Impact of methamphetamine on regional metabolism and cerebral blood flow after traumatic brain injury. Neurocrit Care 19:183–191PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2012) Cell biology of ischemia/reperfusion injury. Int Rev Cell Mol Biol 298:229–317PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Warren MW, Larner SF, Kobeissy FH, Brezing CA, Jeung JA, Hayes RL, Gold MS, Wang KK (2007) Calpain and caspase proteolytic markers co-localize with rat cortical neurons after exposure to methamphetamine and MDMA. Acta Neuropathol 114:277–286PubMedCrossRefGoogle Scholar
  82. 82.
    Nath R, Raser KJ, Stafford D, Hajimohammadreza I, Posner A, Allen H, Talanian RV, Yuen P, Gilbertsen RB, Wang KK (1996) Non-erythroid alpha-spectrin breakdown by calpain and interleukin 1 beta-converting-enzyme-like protease(s) in apoptotic cells: contributory roles of both protease families in neuronal apoptosis. Biochem J 319. (Pt 3:683–690PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Wallace TL, Vorhees CV, Zemlan FP, Gudelsky GA (2003) Methamphetamine enhances the cleavage of the cytoskeletal protein tau in the rat brain. Neuroscience 116:1063–1068PubMedCrossRefGoogle Scholar
  84. 84.
    Persidsky Y, Ramirez SH, Haorah J, Kanmogne GD (2006) Blood-brain barrier: structural components and function under physiologic and pathologic conditions. J Neuroimmune Pharmacol 1:223–236PubMedCrossRefGoogle Scholar
  85. 85.
    Bowyer JF, Ali S (2006) High doses of methamphetamine that cause disruption of the blood-brain barrier in limbic regions produce extensive neuronal degeneration in mouse hippocampus. Synapse 60:521–532PubMedCrossRefGoogle Scholar
  86. 86.
    Bowyer JF, Robinson B, Ali S, Schmued LC (2008) Neurotoxic-related changes in tyrosine hydroxylase, microglia, myelin, and the blood-brain barrier in the caudate-putamen from acute methamphetamine exposure. Synapse 62:193–204PubMedCrossRefGoogle Scholar
  87. 87.
    Martins T, Baptista S, Goncalves J, Leal E, Milhazes N, Borges F, Ribeiro CF, Quintela O, Lendoiro E, Lopez-Rivadulla M, Ambrosio AF, Silva AP (2011) Methamphetamine transiently increases the blood-brain barrier permeability in the hippocampus: role of tight junction proteins and matrix metalloproteinase-9. Brain Res 1411:28–40PubMedCrossRefGoogle Scholar
  88. 88.
    Coelho-Santos V, Leitao RA, Cardoso FL, Palmela I, Rito M, Barbosa M, Brito MA, Fontes-Ribeiro CA, Silva AP (2015) The TNF-alpha/NF-kappaB signaling pathway has a key role in methamphetamine-induced blood-brain barrier dysfunction. J Cereb Blood Flow Metab 35:1260–1271PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Quinton MS, Yamamoto BK (2006) Causes and consequences of methamphetamine and MDMA toxicity. AAPS J 8:E337–E347PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Ramirez SH, Potula R, Fan S, Eidem T, Papugani A, Reichenbach N, Dykstra H, Weksler BB, Romero IA, Couraud PO, Persidsky Y (2009) Methamphetamine disrupts blood-brain barrier function by induction of oxidative stress in brain endothelial cells. J Cereb Blood Flow Metab 29:1933–1945PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Qie X, Wen D, Guo H, Xu G, Liu S, Shen Q, Liu Y, Zhang W, Cong B, Ma C (2017) Endoplasmic reticulum stress mediates methamphetamine-induced blood-brain barrier damage. Front Pharmacol 8:639PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Park M, Levine H, Toborek M (2016) Exercise protects against methamphetamine-induced aberrant neurogenesis. Sci Rep 6:34111PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Caldwell J (1976) The metabolism of amphetamines in mammals. Drug Metab Rev 5:219–280PubMedCrossRefGoogle Scholar
  94. 94.
    Chapman DE, Hanson GR, Kesner RP, Keefe KA (2001) Long-term changes in basal ganglia function after a neurotoxic regimen of methamphetamine. J Pharmacol Exp Ther 296:520–527PubMedGoogle Scholar
  95. 95.
    Jayanthi S, McCoy MT, Beauvais G, Ladenheim B, Gilmore K, Wood W III, Becker K, Cadet JL (2009) Methamphetamine induces dopamine D1 receptor-dependent endoplasmic reticulum stress-related molecular events in the rat striatum. PLoS One 4:e6092PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Cox BM, Cope ZA, Parsegian A, Floresco SB, Aston-Jones G, See RE (2016) Chronic methamphetamine self-administration alters cognitive flexibility in male rats. Psychopharmacology 233:2319–2327PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Rusyniak DE (2013) Neurologic manifestations of chronic methamphetamine abuse. Psychiatr Clin North Am 36:261–275PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Tokunaga I, Ishigami A, Kubo S, Gotohda T, Kitamura O (2008) The peroxidative DNA damage and apoptosis in meth-amphetamine-treated rat brain. J Med Investig 55:241–245CrossRefGoogle Scholar
  99. 99.
    Kiyatkin EA, Sharma HS (2009) Acute methamphetamine intoxication: brain hyperthermia, blood-brain barrier, brain edema, and morphological cell abnormalities. Int Rev Neurobiol 88:65–100PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Eyerman DJ, Yamamoto BK (2007) A rapid oxidation and persistent decrease in the vesicular monoamine transporter 2 after methamphetamine. J Neurochem 103:1219–1227PubMedCrossRefGoogle Scholar
  101. 101.
    Gluck MR, Moy LY, Jayatilleke E, Hogan KA, Manzino L, Sonsalla PK (2001) Parallel increases in lipid and protein oxidative markers in several mouse brain regions after methamphetamine treatment. J Neurochem 79:152–160PubMedCrossRefGoogle Scholar
  102. 102.
    Broening HW, Cunefeng PU, Vorhes CV (1997) Methamphetamine selectively damages dopaminergic innervation to the nucleus accumbens core while sparing the shell. Synapse 27:153–160PubMedCrossRefGoogle Scholar
  103. 103.
    Chu PW, Hadlock GC, Vieira-Brock P, Stout K, Hanson GR, Fleckenstein AE (2010) Methamphetamine alters vesicular monoamine transporter-2 function and potassium-stimulated dopamine release. J Neurochem 115:325–332PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Warren MW, Kobeissy FH, Liu MC, Hayes RL, Gold MS, Wang KK (2005) Concurrent calpain and caspase-3 mediated proteolysis of alpha II-spectrin and tau in rat brain after methamphetamine exposure: a similar profile to traumatic brain injury. Life Sci 78:301–309PubMedCrossRefGoogle Scholar
  105. 105.
    Xi ZX, Kleitz HK, Deng X, Ladenheim B, Peng XQ, Li X, Gardner EL, Stein EA, Cadet JL (2009) A single high dose of methamphetamine increases cocaine self-administration by depletion of striatal dopamine in rats. Neuroscience 161:392–402PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Sabol KE, Roach JT, Broom SL, Ferreira C, Preau MM (2001) Long-term effects of a high-dose methamphetamine regimen on subsequent methamphetamine-induced dopamine release in vivo. Brain Res 892:122–129PubMedCrossRefGoogle Scholar
  107. 107.
    Cadet JL, McCoy MT, Cai NS, Krasnova IN, Ladenheim B, Beauvais G, Wilson N, Wood W, Becker KG, Hodges AB (2009) Methamphetamine preconditioning alters midbrain transcriptional responses to methamphetamine-induced injury in the rat striatum. PLoS One 4:e7812PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kuczenski R, Segal DS (1997) An escalating dose/multiple high-dose binge pattern of amphetamine administration results in differential changes in the extracellular dopamine response profiles in caudate-putamen and nucleus accumbens. J Neurosci 17:4441–4447PubMedCrossRefGoogle Scholar
  109. 109.
    Fibiger HC, Mogeer EG (1971) Effect of acute and chronic methamphetamine treatment on tyrosine hydroxylase activity in brain and adrenal medulla. Eur J Pharmacol 16:176–180PubMedCrossRefGoogle Scholar
  110. 110.
    Mandell AJ, Morgan M (1970) Amphetamine induced increase in tyrosine hydroxylase activity. Nature 227:75–76PubMedCrossRefGoogle Scholar
  111. 111.
    Yamamura T, Hishida S, Hatake K, Taniguchi T, Ouchi H (1993) Effects of daily administration of methamphetamine on multiple active/passive avoidance performance in rats. Behav Brain Res 53:105–112PubMedCrossRefGoogle Scholar
  112. 112.
    Broom SL, Yamamoto BK (2005) Effects of subchronic methamphetamine exposure on basal dopamine and stress-induced dopamine release in the nucleus accumbens shell of rats. Psychopharmacology 181:467–476PubMedCrossRefGoogle Scholar
  113. 113.
    Davidson C, Lee TH, Ellinwood EH (2005) Acute and chronic continuous methamphetamine have different long-term behavioral and neurochemical consequences. Neurochem Int 46:189–203PubMedCrossRefPubMedCentralGoogle Scholar
  114. 114.
    Lloyd SA, Corkill B, Bruster MC, Roberts RL, Shanks RA (2017) Chronic methamphetamine exposure significantly decreases microglia activation in the arcuate nucleus. J Chem Neuroanat 82:5–11PubMedCrossRefGoogle Scholar
  115. 115.
    Shanks RA, Ross JM, Doyle HH, Helton AK, Picou BN, Schulz J, Tavares C, Bryant S, Dawson BL, Lloyd SA (2015) Adolescent exposure to cocaine, amphetamine, and methylphenidate cross-sensitizes adults to methamphetamine with drug- and sex-specific effects. Behav Brain Res 281:116–124PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Erickson CA, Barnes CA (2003) The neurobiology of memory changes in normal aging. Exp Gerontol 38:61–69PubMedCrossRefPubMedCentralGoogle Scholar
  117. 117.
    Melo P, Magalhaes A, Alves CJ, Tavares MA, de Sousa L, Summavielle T, Moradas-Ferreira P (2012) Methamphetamine mimics the neurochemical profile of aging in rats and impairs recognition memory. Neurotoxicology 33:491–499PubMedCrossRefGoogle Scholar
  118. 118.
    Kramer JC, Fischman VS, Littlefield DC (1967) Amphetamine abuse. Pattern and effects of high doses taken intravenously. JAMA 201:305–309PubMedCrossRefGoogle Scholar
  119. 119.
    Segal DS, Kuczenski R, O’Neil ML, Melega WP, Cho AK (2003) Escalating dose methamphetamine pretreatment alters the behavioral and neurochemical profiles associated with exposure to a high-dose methamphetamine binge. Neuropsychopharmacology 28:1730–1740PubMedCrossRefGoogle Scholar
  120. 120.
    Nakayama M, Koyama T, Yamashita I (1993) Long-lasting decrease in dopamine uptake sites following repeated administration of methamphetamine in the rat striatum. Brain Res 601:209–212PubMedCrossRefGoogle Scholar
  121. 121.
    Groman SM, Rich KM, Smith NJ, Lee D, Taylor JR (2018) Chronic exposure to methamphetamine disrupts reinforcement-based decision making in rats. Neuropsychopharmacology 43:770–780PubMedCrossRefGoogle Scholar
  122. 122.
    Barr AM, Phillips AG (2002) Increased successive negative contrast in rats withdrawn from an escalating-dose schedule of D-amphetamine. Pharmacol Biochem Behav 71:293–299PubMedCrossRefGoogle Scholar
  123. 123.
    Cadet JL, Krasnova IN, Ladenheim B, Cai NS, McCoy MT, Atianjoh FE (2009) Methamphetamine preconditioning: differential protective effects on monoaminergic systems in the rat brain. Neurotox Res 15:252–259PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Danaceau JP, Deering CE, Day JE, Smeal SJ, Johnson-Davis KL, Fleckenstein AE, Wilkins DG (2007) Persistence of tolerance to methamphetamine-induced monoamine deficits. Eur J Pharmacol 559:46–54PubMedCrossRefGoogle Scholar
  125. 125.
    Graham DL, Noailles PA, Cadet JL (2008) Differential neurochemical consequences of an escalating dose-binge regimen followed by single-day multiple-dose methamphetamine challenges. J Neurochem 105:1873–1885PubMedCrossRefGoogle Scholar
  126. 126.
    Thomas DM, Kuhn DM (2005) Attenuated microglial activation mediates tolerance to the neurotoxic effects of methamphetamine. J Neurochem 92:790–797PubMedCrossRefGoogle Scholar
  127. 127.
    Krasnova IN, Justinova Z, Ladenheim B, Jayanthi S, McCoy MT, Barnes C, Warner JE, Goldberg SR, Cadet JL (2010) Methamphetamine self-administration is associated with persistent biochemical alterations in striatal and cortical dopaminergic terminals in the rat. PLoS One 5:e8790PubMedPubMedCentralCrossRefGoogle Scholar
  128. 128.
    Schwendt M, Rocha A, See RE, Pacchioni AM, McGinty JF, Kalivas PW (2009) Extended methamphetamine self-administration in rats results in a selective reduction of dopamine transporter levels in the prefrontal cortex and dorsal striatum not accompanied by marked monoaminergic depletion. J Pharmacol Exp Ther 331:555–562PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Sharpe AL, Varela E, Bettinger L, Beckstead MJ (2014) Methamphetamine self-administration in mice decreases GIRK channel-mediated currents in midbrain dopamine neurons. Int J Neuropsychopharmacol 18:pyu073PubMedCrossRefGoogle Scholar
  130. 130.
    Kucerova J, Pistovcakova J, Vrskova D, Dusek L, Sulcova A (2012) The effects of methamphetamine self-administration on behavioural sensitization in the olfactory bulbectomy rat model of depression. Int J Neuropsychopharmacol 15:1503–1511PubMedCrossRefGoogle Scholar
  131. 131.
    Segal DS, Kuczenski R (2006) Human methamphetamine pharmacokinetics simulated in the rat: single daily intravenous administration reveals elements of sensitization and tolerance. Neuropsychopharmacology 31:941–955PubMedCrossRefPubMedCentralGoogle Scholar
  132. 132.
    Lacan G, Hadamitzky M, Kuczenski R, Melega WP (2013) Alterations in the striatal dopamine system during intravenous methamphetamine exposure: effects of contingent and noncontingent administration. Synapse 67:476–488PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Hiba Hasan
    • 1
  • Samar Abdelhady
    • 1
  • Muhammad Haidar
    • 1
  • Christina Fakih
    • 1
  • Samer El Hayek
    • 2
  • Stefania Mondello
    • 3
    • 4
  • Firas H. Kobeissy
    • 1
  • Abdullah Shaito
    • 5
  1. 1.Department of Biochemistry and Molecular Genetics, Faculty of MedicineAmerican University of BeirutBeirutLebanon
  2. 2.Department of Psychiatry, Faculty of MedicineAmerican University of Beirut Medical CenterBeirutLebanon
  3. 3.Department of Biomedical and Dental Sciences and Morphofunctional ImagingUniversity of MessinaMessinaItaly
  4. 4.“Oasi” Institute for Research on Mental Retardation and Brain Aging (I.R.C.C.S.)TroinaItaly
  5. 5.Department of Biological and Chemical Sciences, Faculty of Arts and SciencesLebanese International UniversityBeirutLebanon

Personalised recommendations