Nicotine Self-Administration as Paradigm for Medication Discovery for Smoking Cessation: Recent Findings in Medications Targeting the Cholinergic System

  • Jose M. Trigo
  • Bernard Le FollEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 2011)


Tobacco kills every year approximately six million people as a direct result of direct use, and it is still considered one of the most excruciating threats for human health worldwide. The low successful rates of the currently available pharmacotherapies to assist in quitting tobacco use suggest there is a need for more effective treatments.

The intravenous self-administration (IVSA) paradigm is considered the gold standard to study voluntary drug intake in animal models, including nicotine. The IVSA paradigm has been used to identify key mechanisms involved in the addictive properties of nicotine in both rodents and nonhuman primates. In this chapter we describe how the IVSA paradigm has served to further investigate the role of nicotinic acetylcholine receptors (nAChRs) in the reinforcing properties of nicotine. Notably, this review will cover recent advances (i.e., research carried out during the past decade) using the IVSA paradigm, with a focus on the status of research on current smoking cessation medications (such as varenicline and bupropion) and of other nAChR ligands.

The combination of the IVSA paradigm with pharmacological and genetic tools (e.g., knockout animals) has greatly contributed to our understanding of the role of specific subtype nAChRs in nicotine reinforcement processes. We also discuss some of the limitations of the IVSA paradigm so these can be taken into consideration when interpreting and designing new studies.

Key words

IVSA Operant conditioning Tobacco Addiction Animal models 


  1. 1.
    WHO (2018) Tobacco, fact sheet. WHO, GenevaGoogle Scholar
  2. 2.
    Chaiton M, Diemert L, Cohen JE, Bondy SJ, Selby P, Philipneri A, Schwartz R (2016) Estimating the number of quit attempts it takes to quit smoking successfully in a longitudinal cohort of smokers. BMJ Open 6:e011045PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Babb S, Malarcher A, Schauer G, Asman K, Jamal A (2017) Quitting smoking among adults - United States, 2000–2015. MMWR Morb Mortal Wkly Rep 65:1457–1464PubMedCrossRefGoogle Scholar
  4. 4.
    Weeks JR (1962) Experimental morphine addiction: method for automatic intravenous injections in unrestrained rats. Science 138:143–144PubMedCrossRefGoogle Scholar
  5. 5.
    Thompson T, Schuster CR (1964) Morphine self-administration, food-reinforced, and avoidance behaviors in rhesus monkeys. Psychopharmacologia 5:87–94PubMedCrossRefGoogle Scholar
  6. 6.
    Deneau GA, Inoki R (1967) Nicotine self-administration in monkeys. Ann N Y Acad Sci 142:277–279CrossRefGoogle Scholar
  7. 7.
    Le Foll B, Goldberg SR (2009) Effects of nicotine in experimental animals and humans: an update on addictive properties. Handb Exp Pharmacol (192):335–367Google Scholar
  8. 8.
    Le Foll B, Wertheim C, Goldberg SR (2007) High reinforcing efficacy of nicotine in non-human primates. PLoS One 2:e230PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Goldberg SR, Spealman RD, Goldberg DM (1981) Persistent behavior at high rates maintained by intravenous self-administration of nicotine. Science 214:573–575PubMedCrossRefGoogle Scholar
  10. 10.
    Deneau G, Yanagita T, Seevers MH (1969) Self-administration of psychoactive substances by the monkey. Psychopharmacologia 16:30–48PubMedCrossRefGoogle Scholar
  11. 11.
    Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Imperato A, Mulas A, Di Chiara G (1986) Nicotine preferentially stimulates dopamine release in the limbic system of freely moving rats. Eur J Pharmacol 132:337–338PubMedCrossRefGoogle Scholar
  13. 13.
    Mansvelder HD, De Rover M, McGehee DS, Brussaard AB (2003) Cholinergic modulation of dopaminergic reward areas: upstream and downstream targets of nicotine addiction. Eur J Pharmacol 480:117–123PubMedCrossRefGoogle Scholar
  14. 14.
    Fagen ZM, Mansvelder HD, Keath JR, McGehee DS (2003) Short- and long-term modulation of synaptic inputs to brain reward areas by nicotine. Ann N Y Acad Sci 1003:185–195PubMedCrossRefGoogle Scholar
  15. 15.
    Birrell CE, Balfour DJ (1998) The influence of nicotine pretreatment on mesoaccumbens dopamine overflow and locomotor responses to D-amphetamine. Psychopharmacology 140:142–149PubMedCrossRefGoogle Scholar
  16. 16.
    Clarke PB (1990) Mesolimbic dopamine activation--the key to nicotine reinforcement? Ciba Found Symp 152:153–162; discussion 162–158PubMedGoogle Scholar
  17. 17.
    Di Chiara G (2000) Role of dopamine in the behavioural actions of nicotine related to addiction. Eur J Pharmacol 393:295–314PubMedCrossRefGoogle Scholar
  18. 18.
    Le Foll B, Guranda M, Wilson AA, Houle S, Rusjan PM, Wing VC, Zawertailo L, Busto U, Selby P, Brody AL, George TP, Boileau I (2014) Elevation of dopamine induced by cigarette smoking: novel insights from a [11C]-+-PHNO PET study in humans. Neuropsychopharmacology 39:415–424PubMedCrossRefGoogle Scholar
  19. 19.
    Volkow ND, Morales M (2015) The brain on drugs: from reward to addiction. Cell 162:712–725PubMedCrossRefGoogle Scholar
  20. 20.
    Morel C, Fattore L, Pons S, Hay YA, Marti F, Lambolez B, De Biasi M, Lathrop M, Fratta W, Maskos U, Faure P (2014) Nicotine consumption is regulated by a human polymorphism in dopamine neurons. Mol Psychiatry 19:930–936PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    LeSage MG, Keyler DE, Shoeman D, Raphael D, Collins G, Pentel PR (2002) Continuous nicotine infusion reduces nicotine self-administration in rats with 23-h/day access to nicotine. Pharmacol Biochem Behav 72:279–289PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Moretti M, Mugnaini M, Tessari M, Zoli M, Gaimarri A, Manfredi I, Pistillo F, Clementi F, Gotti C (2010) A comparative study of the effects of the intravenous self-administration or subcutaneous minipump infusion of nicotine on the expression of brain neuronal nicotinic receptor subtypes. Mol Pharmacol 78:287–296PubMedCrossRefGoogle Scholar
  23. 23.
    O’Dell LE, Chen SA, Smith RT, Specio SE, Balster RL, Paterson NE, Markou A, Zorrilla EP, Koob GF (2007) Extended access to nicotine self-administration leads to dependence: circadian measures, withdrawal measures, and extinction behavior in rats. J Pharmacol Exp Ther 320:180–193PubMedCrossRefGoogle Scholar
  24. 24.
    Metaxas A, Bailey A, Barbano MF, Galeote L, Maldonado R, Kitchen I (2010) Differential region-specific regulation of alpha4beta2∗ nAChRs by self-administered and non-contingent nicotine in C57BL/6J mice. Addict Biol 15:464–479PubMedCrossRefGoogle Scholar
  25. 25.
    Natividad LA, Torres OV, Friedman TC, O’Dell LE (2013) Adolescence is a period of development characterized by short- and long-term vulnerability to the rewarding effects of nicotine and reduced sensitivity to the anorectic effects of this drug. Behav Brain Res 257:275–285PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Dickson PE, Miller MM, Rogers TD, Blaha CD, Mittleman G (2014) Effects of adolescent nicotine exposure and withdrawal on intravenous cocaine self-administration during adulthood in male C57BL/6J mice. Addict Biol 19:37–48PubMedCrossRefGoogle Scholar
  27. 27.
    Cohen A, Koob GF, George O (2012) Robust escalation of nicotine intake with extended access to nicotine self-administration and intermittent periods of abstinence. Neuropsychopharmacology 37:2153–2160PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Malysz J, Anderson DJ, Gronlien JH, Ji J, Bunnelle WH, Hakerud M, Thorin-Hagene K, Ween H, Helfrich R, Hu M, Gubbins E, Gopalakrishnan S, Puttfarcken PS, Briggs CA, Li J, Meyer MD, Dyhring T, Ahring PK, Nielsen EO, Peters D, Timmermann DB, Gopalakrishnan M (2010) In vitro pharmacological characterization of a novel selective alpha7 neuronal nicotinic acetylcholine receptor agonist ABT-107. J Pharmacol Exp Ther 334:863–874PubMedCrossRefGoogle Scholar
  29. 29.
    Lee AM, Arreola AC, Kimmey BA, Schmidt HD (2014) Administration of the nicotinic acetylcholine receptor agonists ABT-089 and ABT-107 attenuates the reinstatement of nicotine-seeking behavior in rats. Behav Brain Res 274:168–175PubMedCrossRefGoogle Scholar
  30. 30.
    Yohn NL, Turner JR, Blendy JA (2014) Activation of alpha4beta2∗/alpha6beta2∗ nicotinic receptors alleviates anxiety during nicotine withdrawal without upregulating nicotinic receptors. J Pharmacol Exp Ther 349:348–354PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Othman AA, Lenz RA, Zhang J, Li J, Awni WM, Dutta S (2011) Single- and multiple-dose pharmacokinetics, safety, and tolerability of the selective alpha7 neuronal nicotinic receptor agonist, ABT-107, in healthy human volunteers. J Clin Pharmacol 51:512–526PubMedCrossRefGoogle Scholar
  32. 32.
    Lukas RJ, Changeux JP, Le Novere N, Albuquerque EX, Balfour DJ, Berg DK, Bertrand D, Chiappinelli VA, Clarke PB, Collins AC, Dani JA, Grady SR, Kellar KJ, Lindstrom JM, Marks MJ, Quik M, Taylor PW, Wonnacott S (1999) International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacol Rev 51:397–401PubMedGoogle Scholar
  33. 33.
    Rollema H, Chambers LK, Coe JW, Glowa J, Hurst RS, Lebel LA, Lu Y, Mansbach RS, Mather RJ, Rovetti CC, Sands SB, Schaeffer E, Schulz DW, Tingley FD III, Williams KE (2007) Pharmacological profile of the alpha4beta2 nicotinic acetylcholine receptor partial agonist varenicline, an effective smoking cessation aid. Neuropharmacology 52:985–994PubMedCrossRefGoogle Scholar
  34. 34.
    Mihalak KB, Carroll FI, Luetje CW (2006) Varenicline is a partial agonist at alpha4beta2 and a full agonist at alpha7 neuronal nicotinic receptors. Mol Pharmacol 70:801–805PubMedCrossRefGoogle Scholar
  35. 35.
    Bordia T, Hrachova M, Chin M, McIntosh JM, Quik M (2012) Varenicline is a potent partial agonist at alpha6beta2∗ nicotinic acetylcholine receptors in rat and monkey striatum. J Pharmacol Exp Ther 342:327–334PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Le Foll B, Chakraborty-Chatterjee M, Lev-Ran S, Barnes C, Pushparaj A, Gamaleddin I, Yan Y, Khaled M, Goldberg SR (2012) Varenicline decreases nicotine self-administration and cue-induced reinstatement of nicotine-seeking behaviour in rats when a long pretreatment time is used. Int J Neuropsychopharmacol 15:1265–1274PubMedCrossRefGoogle Scholar
  37. 37.
    O’Connor EC, Parker D, Rollema H, Mead AN (2010) The alpha4beta2 nicotinic acetylcholine-receptor partial agonist varenicline inhibits both nicotine self-administration following repeated dosing and reinstatement of nicotine seeking in rats. Psychopharmacology 208:365–376PubMedCrossRefGoogle Scholar
  38. 38.
    Franklin T, Wang Z, Suh JJ, Hazan R, Cruz J, Li Y, Goldman M, Detre JA, O’Brien CP, Childress AR (2011) Effects of varenicline on smoking cue-triggered neural and craving responses. Arch Gen Psychiatry 68:516–526PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Scuppa G, Cippitelli A, Toll L, Ciccocioppo R, Ubaldi M (2015) Varenicline decreases nicotine but not alcohol self-administration in genetically selected Marchigian Sardinian alcohol-preferring (msP) rats. Drug Alcohol Depend 156:126–132PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Schassburger RL, Levin ME, Weaver MT, Palmatier MI, Caggiula AR, Donny EC, Sved AF (2015) Differentiating the primary reinforcing and reinforcement-enhancing effects of varenicline. Psychopharmacology 232:975–983PubMedCrossRefGoogle Scholar
  41. 41.
    Macnamara CL, Holmes NM, Westbrook RF, Clemens KJ (2016) Varenicline impairs extinction and enhances reinstatement across repeated cycles of nicotine self-administration in rats. Neuropharmacology 105:463–470PubMedCrossRefGoogle Scholar
  42. 42.
    Funk D, Lo S, Coen K, Le AD (2016) Effects of varenicline on operant self-administration of alcohol and/or nicotine in a rat model of co-abuse. Behav Brain Res 296:157–162PubMedCrossRefGoogle Scholar
  43. 43.
    Costello MR, Reynaga DD, Mojica CY, Zaveri NT, Belluzzi JD, Leslie FM (2014) Comparison of the reinforcing properties of nicotine and cigarette smoke extract in rats. Neuropsychopharmacology 39:1843–1851PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Forget B, Wertheim C, Mascia P, Pushparaj A, Goldberg SR, Le Foll B (2010) Noradrenergic alpha1 receptors as a novel target for the treatment of nicotine addiction. Neuropsychopharmacology 35:1751–1760PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    George TP, Weinberger AH (2008) Monoamine oxidase inhibition for tobacco pharmacotherapy. Clin Pharmacol Ther 83:619–621PubMedCrossRefGoogle Scholar
  46. 46.
    Kahn R, Gorgon L, Jones K, McSherry F, Glover ED, Anthenelli RM, Jackson T, Williams J, Murtaugh C, Montoya I, Yu E, Elkashef A (2012) Selegiline transdermal system (STS) as an aid for smoking cessation. Nicotine Tob Res 14:377–382PubMedCrossRefGoogle Scholar
  47. 47.
    Killen JD, Fortmann SP, Murphy GM Jr, Hayward C, Fong D, Lowenthal K, Bryson SW, Killen DT, Schatzberg AF (2010) Failure to improve cigarette smoking abstinence with transdermal selegiline + cognitive behavior therapy. Addiction 105:1660–1668PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Weinberger AH, Reutenauer EL, Jatlow PI, O’Malley SS, Potenza MN, George TP (2010) A double-blind, placebo-controlled, randomized clinical trial of oral selegiline hydrochloride for smoking cessation in nicotine-dependent cigarette smokers. Drug Alcohol Depend 107:188–195PubMedCrossRefGoogle Scholar
  49. 49.
    Levin ME, Weaver MT, Palmatier MI, Caggiula AR, Sved AF, Donny EC (2012) Varenicline dose dependently enhances responding for nonpharmacological reinforcers and attenuates the reinforcement-enhancing effects of nicotine. Nicotine Tob Res 14:299–305PubMedCrossRefGoogle Scholar
  50. 50.
    Higgins GA, Silenieks LB, Rossmann A, Rizos Z, Noble K, Soko AD, Fletcher PJ (2012) The 5-HT2C receptor agonist lorcaserin reduces nicotine self-administration, discrimination, and reinstatement: relationship to feeding behavior and impulse control. Neuropsychopharmacology 37:1177–1191PubMedCrossRefGoogle Scholar
  51. 51.
    Di Matteo V, Pierucci M, Esposito E (2004) Selective stimulation of serotonin2c receptors blocks the enhancement of striatal and accumbal dopamine release induced by nicotine administration. J Neurochem 89:418–429PubMedCrossRefGoogle Scholar
  52. 52.
    Levin ED, Johnson JE, Slade S, Wells C, Cauley M, Petro A, Rose JE (2011) Lorcaserin, a 5-HT2C agonist, decreases nicotine self-administration in female rats. J Pharmacol Exp Ther 338:890–896PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Fletcher PJ, Li Z, Silenieks LB, MacMillan C, DeLannoy I, Higgins GA (2018) Preclinical evidence for combining the 5-HT2C receptor agonist lorcaserin and varenicline as a treatment for nicotine dependence. Addict Biol. Scholar
  54. 54.
    Shanahan WR, Rose JE, Glicklich A, Stubbe S, Sanchez-Kam M (2017) Lorcaserin for smoking cessation and associated weight gain: a randomized 12-week clinical trial. Nicotine Tob Res 19:944–951PubMedGoogle Scholar
  55. 55.
    Charntikov S, Falco AM, Fink K, Dwoskin LP, Bevins RA (2017) The effect of sazetidine-A and other nicotinic ligands on nicotine controlled goal-tracking in female and male rats. Neuropharmacology 113:354–366PubMedCrossRefGoogle Scholar
  56. 56.
    Rezvani AH, Slade S, Wells C, Petro A, Lumeng L, Li TK, Xiao Y, Brown ML, Paige MA, McDowell BE, Rose JE, Kellar KJ, Levin ED (2010) Effects of sazetidine-A, a selective alpha4beta2 nicotinic acetylcholine receptor desensitizing agent on alcohol and nicotine self-administration in selectively bred alcohol-preferring (P) rats. Psychopharmacology 211:161–174PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Levin ED, Rezvani AH, Xiao Y, Slade S, Cauley M, Wells C, Hampton D, Petro A, Rose JE, Brown ML, Paige MA, McDowell BE, Kellar KJ (2010) Sazetidine-A, a selective alpha4beta2 nicotinic receptor desensitizing agent and partial agonist, reduces nicotine self-administration in rats. J Pharmacol Exp Ther 332:933–939PubMedCrossRefGoogle Scholar
  58. 58.
    Johnson JE, Slade S, Wells C, Petro A, Sexton H, Rezvani AH, Brown ML, Paige MA, McDowell BE, Xiao Y, Kellar KJ, Levin ED (2012) Assessing the effects of chronic sazetidine-A delivery on nicotine self-administration in both male and female rats. Psychopharmacology 222:269–276PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Levin ED, Wells C, Slade S, Rezvani AH (2018) Mutually augmenting interactions of dextromethorphan and sazetidine-A for reducing nicotine self-administration in rats. Pharmacol Biochem Behav 166:42–47PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Marks MJ, Wageman CR, Grady SR, Gopalakrishnan M, Briggs CA (2009) Selectivity of ABT-089 for alpha4beta2∗ and alpha6beta2∗ nicotinic acetylcholine receptors in brain. Biochem Pharmacol 78:795–802PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Yildirim E, Connor DA, Gould TJ (2015) ABT-089, but not ABT-107, ameliorates nicotine withdrawal-induced cognitive deficits in C57BL6/J mice. Behav Pharmacol 26:241–248PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Apostol G, Abi-Saab W, Kratochvil CJ, Adler LA, Robieson WZ, Gault LM, Pritchett YL, Feifel D, Collins MA, Saltarelli MD (2012) Efficacy and safety of the novel alpha(4)beta(2) neuronal nicotinic receptor partial agonist ABT-089 in adults with attention-deficit/hyperactivity disorder: a randomized, double-blind, placebo-controlled crossover study. Psychopharmacology 219:715–725PubMedCrossRefGoogle Scholar
  63. 63.
    Bain EE, Apostol G, Sangal RB, Robieson WZ, McNeill DL, Abi-Saab WM, Saltarelli MD (2012) A randomized pilot study of the efficacy and safety of ABT-089, a novel alpha4beta2 neuronal nicotinic receptor agonist, in adults with attention-deficit/hyperactivity disorder. J Clin Psychiatry 73:783–789PubMedCrossRefGoogle Scholar
  64. 64.
    Cohen C, Bergis OE, Galli F, Lochead AW, Jegham S, Biton B, Leonardon J, Avenet P, Sgard F, Besnard F, Graham D, Coste A, Oblin A, Curet O, Voltz C, Gardes A, Caille D, Perrault G, George P, Soubrie P, Scatton B (2003) SSR591813, a novel selective and partial alpha4beta2 nicotinic receptor agonist with potential as an aid to smoking cessation. J Pharmacol Exp Ther 306:407–420PubMedCrossRefGoogle Scholar
  65. 65.
    Tonstad S, Holme I, Tonnesen P (2011) Dianicline, a novel alpha4beta2 nicotinic acetylcholine receptor partial agonist, for smoking cessation: a randomized placebo-controlled clinical trial. Nicotine Tob Res 13:1–6PubMedCrossRefGoogle Scholar
  66. 66.
    West R, Zatonski W, Cedzynska M, Lewandowska D, Pazik J, Aveyard P, Stapleton J (2011) Placebo-controlled trial of cytisine for smoking cessation. N Engl J Med 365:1193–1200PubMedCrossRefGoogle Scholar
  67. 67.
    Walker N, Howe C, Glover M, McRobbie H, Barnes J, Nosa V, Parag V, Bassett B, Bullen C (2014) Cytisine versus nicotine for smoking cessation. N Engl J Med 371:2353–2362PubMedCrossRefGoogle Scholar
  68. 68.
    Grady SR, Drenan RM, Breining SR, Yohannes D, Wageman CR, Fedorov NB, McKinney S, Whiteaker P, Bencherif M, Lester HA, Marks MJ (2010) Structural differences determine the relative selectivity of nicotinic compounds for native alpha 4 beta 2∗-, alpha 6 beta 2∗-, alpha 3 beta 4∗- and alpha 7-nicotine acetylcholine receptors. Neuropharmacology 58:1054–1066PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Radchenko EV, Dravolina OA, Bespalov AY (2015) Agonist and antagonist effects of cytisine in vivo. Neuropharmacology 95:206–214PubMedCrossRefGoogle Scholar
  70. 70.
    Grebenstein PE, Harp JL, Rowland NE (2013) The effects of noncontingent and self-administered cytisine on body weight and meal patterns in male Sprague-Dawley rats. Pharmacol Biochem Behav 110:192–200PubMedCrossRefGoogle Scholar
  71. 71.
    Igari M, Alexander JC, Ji Y, Qi X, Papke RL, Bruijnzeel AW (2014) Varenicline and cytisine diminish the dysphoric-like state associated with spontaneous nicotine withdrawal in rats. Neuropsychopharmacology 39:455–465PubMedCrossRefGoogle Scholar
  72. 72.
    Canu Boido C, Sparatore F (1999) Synthesis and preliminary pharmacological evaluation of some cytisine derivatives. Farmaco 54:438–451PubMedCrossRefGoogle Scholar
  73. 73.
    Sala M, Braida D, Pucci L, Manfredi I, Marks MJ, Wageman CR, Grady SR, Loi B, Fucile S, Fasoli F, Zoli M, Tasso B, Sparatore F, Clementi F, Gotti C (2013) CC4, a dimer of cytisine, is a selective partial agonist at alpha4beta2/alpha6beta2 nAChR with improved selectivity for tobacco smoking cessation. Br J Pharmacol 168:835–849PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Gotti C, Guiducci S, Tedesco V, Corbioli S, Zanetti L, Moretti M, Zanardi A, Rimondini R, Mugnaini M, Clementi F, Chiamulera C, Zoli M (2010) Nicotinic acetylcholine receptors in the mesolimbic pathway: primary role of ventral tegmental area alpha6beta2∗ receptors in mediating systemic nicotine effects on dopamine release, locomotion, and reinforcement. J Neurosci 30:5311–5325PubMedCrossRefGoogle Scholar
  75. 75.
    Brunzell DH, Boschen KE, Hendrick ES, Beardsley PM, McIntosh JM (2010) Alpha-conotoxin MII-sensitive nicotinic acetylcholine receptors in the nucleus accumbens shell regulate progressive ratio responding maintained by nicotine. Neuropsychopharmacology 35:665–673PubMedCrossRefGoogle Scholar
  76. 76.
    Drenan RM, Grady SR, Steele AD, McKinney S, Patzlaff NE, McIntosh JM, Marks MJ, Miwa JM, Lester HA (2010) Cholinergic modulation of locomotion and striatal dopamine release is mediated by alpha6alpha4∗ nicotinic acetylcholine receptors. J Neurosci 30:9877–9889PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Brunzell DH (2012) Preclinical evidence that activation of mesolimbic alpha 6 subunit containing nicotinic acetylcholine receptors supports nicotine addiction phenotype. Nicotine Tob Res 14:1258–1269PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Jackson KJ, McIntosh JM, Brunzell DH, Sanjakdar SS, Damaj MI (2009) The role of alpha6-containing nicotinic acetylcholine receptors in nicotine reward and withdrawal. J Pharmacol Exp Ther 331:547–554PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Pons S, Fattore L, Cossu G, Tolu S, Porcu E, McIntosh JM, Changeux JP, Maskos U, Fratta W (2008) Crucial role of alpha4 and alpha6 nicotinic acetylcholine receptor subunits from ventral tegmental area in systemic nicotine self-administration. J Neurosci 28:12318–12327PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Beckmann JS, Meyer AC, Pivavarchyk M, Horton DB, Zheng G, Smith AM, Wooters TE, McIntosh JM, Crooks PA, Bardo MT, Dwoskin LP (2015) r-bPiDI, an alpha6beta2∗ nicotinic receptor antagonist, decreases nicotine-evoked dopamine release and nicotine reinforcement. Neurochem Res 40:2121–2130PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Crooks PA, Bardo MT, Dwoskin LP (2014) Nicotinic receptor antagonists as treatments for nicotine abuse. Adv Pharmacol 69:513–551PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Wooters TE, Smith AM, Pivavarchyk M, Siripurapu KB, McIntosh JM, Zhang Z, Crooks PA, Bardo MT, Dwoskin LP (2011) bPiDI: a novel selective alpha6beta2∗ nicotinic receptor antagonist and preclinical candidate treatment for nicotine abuse. Br J Pharmacol 163:346–357PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Smith AM, Pivavarchyk M, Wooters TE, Zhang Z, Zheng G, McIntosh JM, Crooks PA, Bardo MT, Dwoskin LP (2010) Repeated nicotine administration robustly increases bPiDDB inhibitory potency at alpha6beta2-containing nicotinic receptors mediating nicotine-evoked dopamine release. Biochem Pharmacol 80:402–409PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Maggio SE, Saunders MA, Baxter TA, Nixon K, Prendergast MA, Zheng G, Crooks P, Dwoskin LP, Slack RD, Newman AH, Bell RL, Bardo MT (2018) Effects of the nicotinic agonist varenicline, nicotinic antagonist r-bPiDI, and DAT inhibitor (R)-modafinil on co-use of ethanol and nicotine in female P rats. Psychopharmacology 235:1439–1453PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Glick SD, Maisonneuve IM, Dickinson HA, Kitchen BA (2001) Comparative effects of dextromethorphan and dextrorphan on morphine, methamphetamine, and nicotine self-administration in rats. Eur J Pharmacol 422:87–90PubMedCrossRefGoogle Scholar
  86. 86.
    Briggs SA, Hall BJ, Wells C, Slade S, Jaskowski P, Morrison M, Rezvani AH, Rose JE, Levin ED (2016) Dextromethorphan interactions with histaminergic and serotonergic treatments to reduce nicotine self-administration in rats. Pharmacol Biochem Behav 142:1–7PubMedCrossRefGoogle Scholar
  87. 87.
    Dwoskin LP, Rauhut AS, King-Pospisil KA, Bardo MT (2006) Review of the pharmacology and clinical profile of bupropion, an antidepressant and tobacco use cessation agent. CNS Drug Rev 12:178–207PubMedCrossRefGoogle Scholar
  88. 88.
    Stahl SM, Pradko JF, Haight BR, Modell JG, Rockett CB, Learned-Coughlin S (2004) A review of the neuropharmacology of bupropion, a dual norepinephrine and dopamine reuptake inhibitor. Prim Care Companion J Clin Psychiatry 6:159–166PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Slemmer JE, Martin BR, Damaj MI (2000) Bupropion is a nicotinic antagonist. J Pharmacol Exp Ther 295:321–327PubMedGoogle Scholar
  90. 90.
    Malcolm E, Carroll FI, Blough B, Damaj MI, Shoaib M (2015) Examination of the metabolite hydroxybupropion in the reinforcing and aversive stimulus effects of nicotine in rats. Psychopharmacology 232:2763–2771PubMedCrossRefGoogle Scholar
  91. 91.
    Hall BJ, Slade S, Wells C, Rose JE, Levin ED (2015) Bupropion-varenicline interactions and nicotine self-administration behavior in rats. Pharmacol Biochem Behav 130:84–89PubMedCrossRefGoogle Scholar
  92. 92.
    Liu X, Caggiula AR, Palmatier MI, Donny EC, Sved AF (2008) Cue-induced reinstatement of nicotine-seeking behavior in rats: effect of bupropion, persistence over repeated tests, and its dependence on training dose. Psychopharmacology 196:365–375PubMedCrossRefGoogle Scholar
  93. 93.
    S Kohut, C Barkin, B Blough, F Ivy Carroll, and J Bergman (2016) Effects of chronic treatment with bupropion on nicotine, cocaine, and nicotine + cocaine polydrug self-administration. FASEB J 30(1_Suppl):1187.6Google Scholar
  94. 94.
    DeNoble VJ, Mele PC (2006) Intravenous nicotine self-administration in rats: effects of mecamylamine, hexamethonium and naloxone. Psychopharmacology 184:266–272PubMedCrossRefGoogle Scholar
  95. 95.
    Stairs DJ, Neugebauer NM, Bardo MT (2010) Nicotine and cocaine self-administration using a multiple schedule of intravenous drug and sucrose reinforcement in rats. Behav Pharmacol 21:182–193PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Liu X, Caggiula AR, Yee SK, Nobuta H, Sved AF, Pechnick RN, Poland RE (2007) Mecamylamine attenuates cue-induced reinstatement of nicotine-seeking behavior in rats. Neuropsychopharmacology 32:710–718PubMedCrossRefGoogle Scholar
  97. 97.
    Ginsburg BC, Lamb RJ (2013) Effects of varenicline on ethanol- and food-maintained responding in a concurrent access procedure. Alcohol Clin Exp Res 37:1228–1233PubMedPubMedCentralCrossRefGoogle Scholar
  98. 98.
    Rose JE, Behm FM, Westman EC, Bates JE (2003) Mecamylamine acutely increases human intravenous nicotine self-administration. Pharmacol Biochem Behav 76:307–313PubMedCrossRefGoogle Scholar
  99. 99.
    Nemeth-Coslett R, Henningfield JE, O’Keeffe MK, Griffiths RR (1986) Effects of mecamylamine on human cigarette smoking and subjective ratings. Psychopharmacology 88:420–425PubMedCrossRefGoogle Scholar
  100. 100.
    Wang T, Wang B, Chen H (2014) Menthol facilitates the intravenous self-administration of nicotine in rats. Front Behav Neurosci 8:437PubMedPubMedCentralGoogle Scholar
  101. 101.
    Clemens KJ, Caille S, Stinus L, Cador M (2009) The addition of five minor tobacco alkaloids increases nicotine-induced hyperactivity, sensitization and intravenous self-administration in rats. Int J Neuropsychopharmacol 12:1355–1366PubMedCrossRefPubMedCentralGoogle Scholar
  102. 102.
    Toll L, Zaveri NT, Polgar WE, Jiang F, Khroyan TV, Zhou W, Xie XS, Stauber GB, Costello MR, Leslie FM (2012) AT-1001: a high affinity and selective alpha3beta4 nicotinic acetylcholine receptor antagonist blocks nicotine self-administration in rats. Neuropsychopharmacology 37:1367–1376PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Cippitelli A, Wu J, Gaiolini KA, Mercatelli D, Schoch J, Gorman M, Ramirez A, Ciccocioppo R, Khroyan TV, Yasuda D, Zaveri NT, Pascual C, Xie XS, Toll L (2015) AT-1001: a high-affinity alpha3beta4 nAChR ligand with novel nicotine-suppressive pharmacology. Br J Pharmacol 172:1834–1845PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Klink R, de Kerchove d’Exaerde A, Zoli M, Changeux JP (2001) Molecular and physiological diversity of nicotinic acetylcholine receptors in the midbrain dopaminergic nuclei. J Neurosci 21:1452–1463PubMedCrossRefGoogle Scholar
  105. 105.
    Glick SD, Sell EM, McCallum SE, Maisonneuve IM (2011) Brain regions mediating alpha3beta4 nicotinic antagonist effects of 18-MC on nicotine self-administration. Eur J Pharmacol 669:71–75PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Mansvelder HD, Keath JR, McGehee DS (2002) Synaptic mechanisms underlie nicotine-induced excitability of brain reward areas. Neuron 33:905–919PubMedCrossRefPubMedCentralGoogle Scholar
  107. 107.
    Drenan RM, Lester HA (2012) Insights into the neurobiology of the nicotinic cholinergic system and nicotine addiction from mice expressing nicotinic receptors harboring gain-of-function mutations. Pharmacol Rev 64:869–879PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Picciotto MR, Kenny PJ (2013) Molecular mechanisms underlying behaviors related to nicotine addiction. Cold Spring Harb Perspect Med 3:a012112PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Walters CL, Brown S, Changeux JP, Martin B, Damaj MI (2006) The beta2 but not alpha7 subunit of the nicotinic acetylcholine receptor is required for nicotine-conditioned place preference in mice. Psychopharmacology 184:339–344PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Brunzell DH, McIntosh JM (2012) Alpha7 nicotinic acetylcholine receptors modulate motivation to self-administer nicotine: implications for smoking and schizophrenia. Neuropsychopharmacology 37:1134–1143PubMedCrossRefGoogle Scholar
  111. 111.
    Brunzell DH, McIntosh JM, Papke RL (2014) Diverse strategies targeting alpha7 homomeric and alpha6beta2∗ heteromeric nicotinic acetylcholine receptors for smoking cessation. Ann N Y Acad Sci 1327:27–45PubMedPubMedCentralGoogle Scholar
  112. 112.
    Tolu S, Eddine R, Marti F, David V, Graupner M, Pons S, Baudonnat M, Husson M, Besson M, Reperant C, Zemdegs J, Pages C, Hay YA, Lambolez B, Caboche J, Gutkin B, Gardier AM, Changeux JP, Faure P, Maskos U (2013) Co-activation of VTA DA and GABA neurons mediates nicotine reinforcement. Mol Psychiatry 18:382–393PubMedCrossRefGoogle Scholar
  113. 113.
    Pignatelli M, Bonci A (2015) Role of dopamine neurons in reward and aversion: a synaptic plasticity perspective. Neuron 86:1145–1157PubMedCrossRefGoogle Scholar
  114. 114.
    Nashmi R, Xiao C, Deshpande P, McKinney S, Grady SR, Whiteaker P, Huang Q, McClure-Begley T, Lindstrom JM, Labarca C, Collins AC, Marks MJ, Lester HA (2007) Chronic nicotine cell specifically upregulates functional alpha 4∗ nicotinic receptors: basis for both tolerance in midbrain and enhanced long-term potentiation in perforant path. J Neurosci 27:8202–8218PubMedCrossRefGoogle Scholar
  115. 115.
    Exley R, Maubourguet N, David V, Eddine R, Evrard A, Pons S, Marti F, Threlfell S, Cazala P, McIntosh JM, Changeux JP, Maskos U, Cragg SJ, Faure P (2011) Distinct contributions of nicotinic acetylcholine receptor subunit alpha4 and subunit alpha6 to the reinforcing effects of nicotine. Proc Natl Acad Sci U S A 108:7577–7582PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Chatterjee S, Santos N, Holgate J, Haass-Koffler CL, Hopf FW, Kharazia V, Lester H, Bonci A, Bartlett SE (2013) The alpha5 subunit regulates the expression and function of alpha4∗-containing neuronal nicotinic acetylcholine receptors in the ventral-tegmental area. PLoS One 8:e68300PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Jackson KJ, Marks MJ, Vann RE, Chen X, Gamage TF, Warner JA, Damaj MI (2010) Role of alpha5 nicotinic acetylcholine receptors in pharmacological and behavioral effects of nicotine in mice. J Pharmacol Exp Ther 334:137–146PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Fowler CD, Lu Q, Johnson PM, Marks MJ, Kenny PJ (2011) Habenular alpha5 nicotinic receptor subunit signalling controls nicotine intake. Nature 471:597–601PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Frahm S, Slimak MA, Ferrarese L, Santos-Torres J, Antolin-Fontes B, Auer S, Filkin S, Pons S, Fontaine JF, Tsetlin V, Maskos U, Ibanez-Tallon I (2011) Aversion to nicotine is regulated by the balanced activity of beta4 and alpha5 nicotinic receptor subunits in the medial habenula. Neuron 70:522–535PubMedCrossRefGoogle Scholar
  120. 120.
    Ables JL, Gorlich A, Antolin-Fontes B, Wang C, Lipford SM, Riad MH, Ren J, Hu F, Luo M, Kenny PJ, Heintz N, Ibanez-Tallon I (2017) Retrograde inhibition by a specific subset of interpeduncular alpha5 nicotinic neurons regulates nicotine preference. Proc Natl Acad Sci U S A 114:13012–13017PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Jackson KJ, Sanjakdar SS, Muldoon PP, McIntosh JM, Damaj MI (2013) The alpha3beta4∗ nicotinic acetylcholine receptor subtype mediates nicotine reward and physical nicotine withdrawal signs independently of the alpha5 subunit in the mouse. Neuropharmacology 70:228–235PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Lysek N, Rachor E, Lindel T (2002) Isolation and structure elucidation of deformylflustrabromine from the North Sea bryozoan Flustra foliacea. Z Naturforsch C 57:1056–1061PubMedCrossRefGoogle Scholar
  123. 123.
    Sala F, Mulet J, Reddy KP, Bernal JA, Wikman P, Valor LM, Peters L, Konig GM, Criado M, Sala S (2005) Potentiation of human alpha4beta2 neuronal nicotinic receptors by a Flustra foliacea metabolite. Neurosci Lett 373:144–149PubMedCrossRefGoogle Scholar
  124. 124.
    Kim JS, Padnya A, Weltzin M, Edmonds BW, Schulte MK, Glennon RA (2007) Synthesis of desformylflustrabromine and its evaluation as an alpha4beta2 and alpha7 nACh receptor modulator. Bioorg Med Chem Lett 17:4855–4860PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Weltzin MM, Schulte MK (2010) Pharmacological characterization of the allosteric modulator desformylflustrabromine and its interaction with alpha4beta2 neuronal nicotinic acetylcholine receptor orthosteric ligands. J Pharmacol Exp Ther 334:917–926PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Liu X (2013) Positive allosteric modulation of alpha4beta2 nicotinic acetylcholine receptors as a new approach to smoking reduction: evidence from a rat model of nicotine self-administration. Psychopharmacology 230:203–213PubMedCrossRefGoogle Scholar
  127. 127.
    Yoshimura RF, Hogenkamp DJ, Li WY, Tran MB, Belluzzi JD, Whittemore ER, Leslie FM, Gee KW (2007) Negative allosteric modulation of nicotinic acetylcholine receptors blocks nicotine self-administration in rats. J Pharmacol Exp Ther 323:907–915PubMedCrossRefGoogle Scholar
  128. 128.
    Hilmas C, Pereira EF, Alkondon M, Rassoulpour A, Schwarcz R, Albuquerque EX (2001) The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: physiopathological implications. J Neurosci 21:7463–7473PubMedCrossRefGoogle Scholar
  129. 129.
    Rover S, Cesura AM, Huguenin P, Kettler R, Szente A (1997) Synthesis and biochemical evaluation of N-(4-phenylthiazol-2-yl)benzenesulfonamides as high-affinity inhibitors of kynurenine 3-hydroxylase. J Med Chem 40:4378–4385PubMedCrossRefGoogle Scholar
  130. 130.
    Secci ME, Auber A, Panlilio LV, Redhi GH, Thorndike EB, Schindler CW, Schwarcz R, Goldberg SR, Justinova Z (2017) Attenuating nicotine reinforcement and relapse by enhancing endogenous brain levels of kynurenic acid in rats and squirrel monkeys. Neuropsychopharmacology 42:1619–1629PubMedPubMedCentralCrossRefGoogle Scholar
  131. 131.
    Burgdorf J, Panksepp J, Moskal JR (2011) Frequency-modulated 50 kHz ultrasonic vocalizations: a tool for uncovering the molecular substrates of positive affect. Neurosci Biobehav Rev 35:1831–1836PubMedCrossRefGoogle Scholar
  132. 132.
    Brudzynski SM (2009) Communication of adult rats by ultrasonic vocalization: biological, sociobiological, and neuroscience approaches. ILAR J 50:43–50PubMedCrossRefGoogle Scholar
  133. 133.
    Knutson B, Burgdorf J, Panksepp J (2002) Ultrasonic vocalizations as indices of affective states in rats. Psychol Bull 128:961–977PubMedCrossRefGoogle Scholar
  134. 134.
    Brudzynski SM, Ociepa D (1992) Ultrasonic vocalization of laboratory rats in response to handling and touch. Physiol Behav 52:655–660PubMedCrossRefGoogle Scholar
  135. 135.
    Browning JR, Browning DA, Maxwell AO, Dong Y, Jansen HT, Panksepp J, Sorg BA (2011) Positive affective vocalizations during cocaine and sucrose self-administration: a model for spontaneous drug desire in rats. Neuropharmacology 61:268–275PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Mahler SV, Moorman DE, Feltenstein MW, Cox BM, Ogburn KB, Bachar M, McGonigal JT, Ghee SM, See RE (2013) A rodent “self-report” measure of methamphetamine craving? Rat ultrasonic vocalizations during methamphetamine self-administration, extinction, and reinstatement. Behav Brain Res 236:78–89PubMedCrossRefGoogle Scholar
  137. 137.
    Sorge RE, Pierre VJ, Clarke PB (2009) Facilitation of intravenous nicotine self-administration in rats by a motivationally neutral sensory stimulus. Psychopharmacology 207:191–200PubMedCrossRefGoogle Scholar
  138. 138.
    Burke CJ, Kisko TM, Swiftwolfe H, Pellis SM, Euston DR (2017) Specific 50-kHz vocalizations are tightly linked to particular types of behavior in juvenile rats anticipating play. PLoS One 12:e0175841PubMedPubMedCentralCrossRefGoogle Scholar
  139. 139.
    Dingess PM, Deters MJ, Darling RA, Yarborough EA, Brown TE (2017) A method for evaluating cocaine-induced social preference in rats. J Biol Methods 4:e66PubMedPubMedCentralCrossRefGoogle Scholar
  140. 140.
    Han W, Wang T, Chen H (2017) Social learning promotes nicotine self-administration by facilitating the extinction of conditioned aversion in isogenic strains of rats. Sci Rep 7:8052PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Chen H, Sharp BM, Matta SG, Wu Q (2011) Social interaction promotes nicotine self-administration with olfactogustatory cues in adolescent rats. Neuropsychopharmacology 36:2629–2638PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Sorge RE, Clarke PB (2009) Rats self-administer intravenous nicotine delivered in a novel smoking-relevant procedure: effects of dopamine antagonists. J Pharmacol Exp Ther 330:633–640PubMedCrossRefGoogle Scholar
  143. 143.
    Samaha AN, Yau WY, Yang P, Robinson TE (2005) Rapid delivery of nicotine promotes behavioral sensitization and alters its neurobiological impact. Biol Psychiatry 57:351–360PubMedCrossRefGoogle Scholar
  144. 144.
    Wickham RJ, Nunes EJ, Hughley S, Silva P, Walton SN, Park J, Addy NA (2018) Evaluating oral flavorant effects on nicotine self-administration behavior and phasic dopamine signaling. Neuropharmacology 128:33–42PubMedCrossRefGoogle Scholar
  145. 145.
    Pogun S, Yararbas G, Nesil T, Kanit L (2017) Sex differences in nicotine preference. J Neurosci Res 95:148–162PubMedCrossRefGoogle Scholar
  146. 146.
    Jensen KP, DeVito EE, Valentine G, Gueorguieva R, Sofuoglu M (2016) Intravenous nicotine self-administration in smokers: dose-response function and sex differences. Neuropsychopharmacology 41:2034–2040PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Sorge RE, Martin LJ, Isbester KA, Sotocinal SG, Rosen S, Tuttle AH, Wieskopf JS, Acland EL, Dokova A, Kadoura B, Leger P, Mapplebeck JC, McPhail M, Delaney A, Wigerblad G, Schumann AP, Quinn T, Frasnelli J, Svensson CI, Sternberg WF, Mogil JS (2014) Olfactory exposure to males, including men, causes stress and related analgesia in rodents. Nat Methods 11:629–632PubMedCrossRefGoogle Scholar
  148. 148.
    Bohlen M, Hayes ER, Bohlen B, Bailoo JD, Crabbe JC, Wahlsten D (2014) Experimenter effects on behavioral test scores of eight inbred mouse strains under the influence of ethanol. Behav Brain Res 272:46–54PubMedPubMedCentralCrossRefGoogle Scholar
  149. 149.
    Collins AC, Pogun S, Nesil T, Kanit L (2012) Oral nicotine self-administration in rodents. J Addict Res Ther.
  150. 150.
    LeSage MG, Keyler DE, Collins G, Pentel PR (2003) Effects of continuous nicotine infusion on nicotine self-administration in rats: relationship between continuously infused and self-administered nicotine doses and serum concentrations. Psychopharmacology 170:278–286PubMedCrossRefGoogle Scholar
  151. 151.
    Clemens KJ, Lay BP, Holmes NM (2017) Extended nicotine self-administration increases sensitivity to nicotine, motivation to seek nicotine and the reinforcing properties of nicotine-paired cues. Addict Biol 22:400–410PubMedCrossRefGoogle Scholar
  152. 152.
    Shoaib M, Buhidma Y (2016) How can we improve on modeling nicotine addiction to develop better smoking cessation treatments? Int Rev Neurobiol 126:121–156PubMedCrossRefGoogle Scholar
  153. 153.
    Corrigall WA, Coen KM (1989) Nicotine maintains robust self-administration in rats on a limited-access schedule. Psychopharmacology (Berl) 99(4):473–478CrossRefGoogle Scholar
  154. 154.
    Harvey DM, Yasar S, Heishman SJ, Panlilio LV, Henningfield JE, Goldberg SR (2004) Nicotine serves as an effective reinforcer of intravenous drug-taking behavior in human cigarette smokers. Psychopharmacology (Berl) 175(2):134–142. Scholar
  155. 155.
    Le Foll B, Goldberg SR (2005) Cannabinoid CB1 receptor antagonists as promising new medications for drug dependence. J Pharmacol Exp Ther 312(3):875–883. Scholar
  156. 156.
    Le Foll B, Goldberg SR, Sokoloff P (2007) Dopamine D3 receptor ligands for the treatment of tobacco dependence. Expert Opin Investig Drugs 16(1):45–57. Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Translational Addiction Research Laboratory, Campbell Family Mental Health Research InstituteCentre for Addiction and Mental Health (CAMH)TorontoCanada
  2. 2.Addictions DivisionCAMHTorontoCanada

Personalised recommendations