Insecticides and Insecticide Resistance

  • Mamadou Ousmane Ndiath
Part of the Methods in Molecular Biology book series (MIMB, volume 2013)


Vector control has significantly reduced malaria morbidity in many regions of the world where the disease was endemic and is now moving toward malaria elimination. Among the tools available for vector control, the use of long-lasting insecticidal bed nets (LLINs) and indoor residual spraying (IRS) has proved most effective. However, Anopheles mosquitoes are becoming increasingly resistant to insecticides. In this chapter, we describe the main aspects of vector control—with a particular focus on insecticidal products commonly used in vector control as well as on mechanisms of insecticide resistance. We also discuss the impact of insecticide resistance on malaria transmission.

Key words

Anopheles Insecticide resistance Vector control Residual malaria transmission 


  1. 1.
    World Health Organization (1992) Ministerial conference on malaria, Amsterdam, The Netherlands 26–27 October. World Health Organization, GenevaGoogle Scholar
  2. 2.
    Roberts L (2002) Mosquitoes and disease. Science 298:82–83PubMedCrossRefGoogle Scholar
  3. 3.
    Esvelt K (2016) Gene editing can drive science to openness. Nature 534:153PubMedCrossRefGoogle Scholar
  4. 4.
    Baldini F, Segata N, Pompon J et al (2014) Evidence of natural Wolbachia infections in field populations of Anopheles gambiae. Nat Commun 5:3985PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    World Health Organization (1997) Vector control: methods for use by individuals and communities. World Health Organization, GenevaGoogle Scholar
  6. 6.
    Mnzava AP, Knox TB, Temu EA (2015) Implementation of the global plan for insecticide resistance management in malaria vectors: progress, challenges and the way forward. Malar J 14:173PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Chanda E, Mzilahowa T, Chipwanya J et al (2016) Scale-up of integrated malaria vector control: lessons from Malawi. Bull World Health Organ 94:475–480PubMedCrossRefGoogle Scholar
  8. 8.
    World Health Organization (2013) Larval source management – a supplementary measure for malaria vector control. An operational manual. World Health Organization, GenevaGoogle Scholar
  9. 9.
    Brownbridge M, Margalit J (1986) New Bacillus thuringiensis strains isolated in Israel are highly toxic to mosquito larvae. J Invertebr Pathol 48:216–222PubMedCrossRefGoogle Scholar
  10. 10.
    World Health Organization (2015) Indoor residual spraying: An operational manual for IRS for malaria transmission, control and elimination, 2nd edn. World Health Organization, GenevaGoogle Scholar
  11. 11.
    Russell TL, Govella NJ, Azizi S et al (2011) Increased proportions of outdoor feeding among residual malaria vector populations following increased use of insecticide-treated nets in rural Tanzania. Malar J 10:80PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Sougoufara S, Diedhiou SM, Doucoure S et al (2014) Biting by Anopheles funestus in broad daylight after use of long-lasting insecticidal nets: a new challenge to malaria elimination. Malar J 13:125PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    WHO Pesticide Evaluation Scheme (2013) WHO recommended insecticides for indoor residual spraying against malaria vectors. World Health Organization, GenevaGoogle Scholar
  14. 14.
    Hamon J, Garrett-Jones C (1963) Resistance to insecticides in the major malaria vectors and its operational importance. Bull World Health Organ 28:1–24PubMedPubMedCentralGoogle Scholar
  15. 15.
    Darriet F, Robert V, Vien NT et al (1984) Evaluation de l’efficacité sur les vecteurs du paludisme de la Permethrine en imprégnation sur des moustiquaires intactes et trouées. Organisation mondiale de la Santé, GenèveGoogle Scholar
  16. 16.
    World Health Organization (2001) Spécifications concernant les tulles pour moustiquaires. Rapport de consultation informelle. World Health Organization, GenevaGoogle Scholar
  17. 17.
    Wilson AL, Dhiman RC, Kitron U et al (2014) Benefit of insecticide-treated nets, curtains and screening on vector borne diseases, excluding malaria: a systematic review and meta-analysis. PLoS Negl Trop Dis 8:e3228PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    World Health Organization (2017) Achieving and maintaining universal coverage with long-lasting insecticidal nets for malaria control. World Health Organization, GenevaGoogle Scholar
  19. 19.
    Ranson H, Lissenden N (2016) Insecticide resistance in African Anopheles mosquitoes: a worsening situation that needs urgent action to maintain malaria control. Trends Parasitol 32:187–196CrossRefGoogle Scholar
  20. 20.
    Martinez-Torres D, Chandre F, Williamson MS et al (1998) Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol 7:179–184PubMedCrossRefGoogle Scholar
  21. 21.
    WHO Pesticide Evaluation Scheme (2016) Geneva: World Health OrganizationGoogle Scholar
  22. 22.
    Beerntsen BT, James AA, Christensen BM (2000) Genetics of mosquito vector competence. Microbiol Mol Biol Rev 64:115–137PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Curtis CF, Pates HV, Takken W et al (1999) Biological problems with the replacement of a vector population by Plasmodium-refractory mosquitoes. Parassitologia 41:479–481PubMedGoogle Scholar
  24. 24.
    Boete C (2005) Malaria parasites in mosquitoes: laboratory models, evolutionary temptation and the real world. Trends Parasitol 21:445–447PubMedCrossRefGoogle Scholar
  25. 25.
    White BJ, Hahn MW, Pombi M et al (2007) Localization of candidate regions maintaining a common polymorphic inversion (2La) in Anopheles gambiae. PLoS Genet 3:e217PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Walker T, Moreira LA (2011) Can Wolbachia be used to control malaria? Mem Inst Oswaldo Cruz 106:212–217PubMedCrossRefGoogle Scholar
  27. 27.
    Raymond-Delpech V, Matsuda K, Sattelle BM, Rauh JJ, Sattelle DB (2005) Ion channels: molecular targets of neuroactive insecticides. Invert Neurosci 5(3-4):119–133.PubMedCrossRefGoogle Scholar
  28. 28.
    Asidi AN, N’Guessan R, Hutchinson RA et al (2004) Experimental hut comparisons of nets treated with carbamate or pyrethroid insecticides, washed or unwashed, against pyrethroid-resistant mosquitoes. Med Vet Entomol 18:134–140PubMedCrossRefGoogle Scholar
  29. 29.
    Hemingway J, Ranson H, Magill A et al (2016) Averting a malaria disaster: will insecticide resistance derail malaria control? Lancet 387:1785–1788PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Who expert citation (WHO Expert Committee on Insecticides & World Health Organization. (1957). Expert Committee on Insecticides: seventh report [of a meeting held in Geneva from 10 to 17 July 1956]. World Health Organization.
  31. 31.
    Harrison CM (1952) The resistance of insects to insecticides. Trans R Soc Trop Med Hyg 46:255–263PubMedCrossRefGoogle Scholar
  32. 32.
    Berticat C, Duron O, Heyse D et al (2004) Insecticide resistance genes confer a predation cost on mosquitoes, Culex pipiens. Genet Res 83:189–196PubMedCrossRefGoogle Scholar
  33. 33.
    Ffrench-Constant RH, Bass C (2017) Does resistance really carry a fitness cost? Curr Opin Insect Sci 21:39–46PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Lockwood JA, Sparks TC, Story RN (1984) Evolution of insect resistance to insecticides: a reevaluation of the roles of physiology and behaviour. Bull Entomol Soc Am 30:41–51Google Scholar
  35. 35.
    Davidson G (1953) Experiments on the effect of residual insecticides in houses against Anopheles gambiae and A. funestus. Bull Entomol Res 44:231–245CrossRefGoogle Scholar
  36. 36.
    Green CA, Gass RF, Munstermann LE et al (1990) Population-genetic evidence for two species in Anopheles minimus in Thailand. Med Vet Entomol 4:25–34PubMedCrossRefGoogle Scholar
  37. 37.
    Chareonviriyaphap T, Bangs MJ, Suwonkerd W et al (2013) Review of insecticide resistance and behavioral avoidance of vectors of human diseases in Thailand. Parasit Vectors 6:280PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Rostant WG, Bowyer J, Coupland J et al (2017) Pleiotropic effects of DDT resistance on male size and behaviour. Behav Genet 47:449–458PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Yahouedo GA, Chandre F, Rossignol M et al (2017) Contributions of cuticle permeability and enzyme detoxification to pyrethroid resistance in the major malaria vector Anopheles gambiae. Sci Rep 7:1109CrossRefGoogle Scholar
  40. 40.
    Koganemaru R, Miller DM, Adelman ZN (2013) Robust cuticular penetration resistance in the common bed bug (Cimex lectularius L.) correlates with increased steady-state transcript levels of CPR-type cuticle protein genes. Pestic Biochem Physiol 106:190–197CrossRefGoogle Scholar
  41. 41.
    Wood O, Hanrahan S, Coetzee M et al (2010) Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus. Parasit Vectors 3:67PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Balabanidou V, Kampouraki A, MacLean M et al (2016) Cytochrome P450 associated with insecticide resistance catalyzes cuticular hydrocarbon production in Anopheles gambiae. Proc Natl Acad Sci U S A 113:9268–9273PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Brogdon WG, McAllister JC, Vulule J (1997) Heme peroxidase activity measured in single mosquitoes identifies individuals expressing an elevated oxidase for insecticide resistance. J Am Mosq Control Assoc 13:233–237PubMedGoogle Scholar
  44. 44.
    Hemingway J, Brogdon WG (1998) Techniques to detect insecticide resistance mechanisms (Field and laboratory manual). In: Document WHO/CDS/CPC/MAL/986. World Health Organization, GenevaGoogle Scholar
  45. 45.
    Ole Sangba ML, Sidick A, Govoetchan R et al (2017) Evidence of multiple insecticide resistance mechanisms in Anopheles gambiae populations in Bangui, Central African Republic. Parasit Vectors 10:23PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Ranson H, N’Guessan R, Lines J et al (2011) Pyrethroid resistance in African anopheline mosquitoes: what are the implications for malaria control? Trends Parasitol 27:91–98CrossRefGoogle Scholar
  47. 47.
    Franciosa H, Bergé JB (1995) Glutathione S-transferases in housefly (Musca domestica): Location of GST-1 and GST-2 families. Insect Biochem Molec Biol 25:311–317CrossRefGoogle Scholar
  48. 48.
    Brogdon WG, McAllister JC (1998) Insecticide resistance and vector control. Emerg Infect Dis 4:605–613PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Dahan-Moss YL, Koekemoer LL (2016) Analysis of esterase enzyme activity in adults of the major malaria vector Anopheles funestus. Parasite Vectors 9:110CrossRefGoogle Scholar
  50. 50.
    Kim YH, Lee SH (2013) Which acetylcholinesterase functions as the main catalytic enzyme in the Class Insecta? Insect Biochem Mol Biol 43:47–53PubMedCrossRefGoogle Scholar
  51. 51.
    Pitman RM (1971) Transmitter substances in insects: A review. Comp Gen Pharmacol 2:347–371PubMedCrossRefGoogle Scholar
  52. 52.
    Mutero A, Pralavorio M, Bride JM et al (1994) Resistance-associated point mutations in insecticide-insensitive acetylcholinesterase. Proc Natl Acad Sci U S A 91:5922–5926PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Weill M, Lutfalla G, Mogensen K et al (2003) Comparative genomics: Insecticide resistance in mosquito vectors. Nature 423:136–137PubMedCrossRefGoogle Scholar
  54. 54.
    Aizoun N, Aikpon R, Gnanguenon V et al (2013) Status of organophosphate and carbamate resistance in Anopheles gambiae sensu lato from the south and north Benin, West Africa. Parasit Vectors 6:274PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Marban E, Yamagishi T, Tomaselli GF (1998) Structure and function of voltage-gated sodium channels. J Physiol 508:647–657PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Dong K (1997) A single amino acid change in the para sodium channel protein is associated with knockdown-resistance (kdr) to pyrethroid insecticides in German cockroach. Insect Biochem Mol Biol 27:93–100PubMedCrossRefGoogle Scholar
  57. 57.
    Dong K (2007) Insect sodium channels and insecticide resistance. Invertebr Neurosci 7:17–30CrossRefGoogle Scholar
  58. 58.
    Hemingway J, Boddington R, Harris J et al (1989) Mechanisms of insecticide resistance in Aedes aegypti (L.) (Diptera: Culicidae) from Puerto Rico. Bulletin of Entomology Research 79:123–130CrossRefGoogle Scholar
  59. 59.
    Vatandoost H, Mccaffery AR, Townson H (1996) Anopheles electrophysiological investigation of target site insensitivity mechanisms in permethrin-resistant and susceptible strain of Anopheles stephensi. Trans R Soc Trop Med Hyg 90:216Google Scholar
  60. 60.
    Chandre F, Darriet F, Darder M et al (1998) Pyrethroid resistance in Culex quinquefasciatus from west Africa. Med Vet Entomol 12:359–366PubMedCrossRefGoogle Scholar
  61. 61.
    Ranson H, Jensen B, Vulule JM et al (2000) Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol 9:491–497PubMedCrossRefGoogle Scholar
  62. 62.
    Djegbe I, Boussari O, Sidick A (2011) Dynamics of insecticide resistance in malaria vectors in Benin: first evidence of the presence of L1014S kdr mutation in Anopheles gambiae from West Africa. Malar J 10:261PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ndiath MO, Cailleau A, Orlandi-Pradines E et al (2015) Emerging knock-down resistance in Anopheles arabiensis populations of Dakar, Senegal: first evidence of a high prevalence of kdr-e mutation in West African urban area. Malar J 14:364PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Ikeda T, Nagata K, Shono T et al (1998) Dieldrin and picrotoxinin modulation of GABA(A) receptor single channels. Neurorepor 9:3189–3195Google Scholar
  65. 65.
    Zhao X, Salgado VL, Yeh JZ et al (2003) Differential actions of fipronil and dieldrin insecticides on GABA-gated chloride channels in cockroach neurons. J Pharmacol Exp Ther 306:914–924PubMedCrossRefGoogle Scholar
  66. 66.
    World Health Organization (2016) World Malaria Report 2016. Document WHO/HTM/GMP/2016. World Health Organization, Geneva, p 2Google Scholar
  67. 67.
    Feachem R, Sabot O (2008) A new global malaria eradication strategy. Lancet 371:1633–1635PubMedCrossRefGoogle Scholar
  68. 68.
    Greenwood BM (2008) Control to elimination: implications for malaria research. Trends Parasitol 24:449–454PubMedCrossRefGoogle Scholar
  69. 69.
    Roberts R, Enserink M (2007) Malaria. Did they really say ... eradication? Science 318:1544–1545PubMedCrossRefGoogle Scholar
  70. 70.
    Russell TL, Beebe NW, Cooper RD et al (2013) Successful malaria elimination strategies require interventions that target changing vector behaviours. Malar J 12:56PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Sokhna C, Ndiath MO, Rogier C (2013) The changes in mosquito vector behaviour and the emerging resistance to insecticides will challenge the decline of malaria. Clin Microbiol Infect 19:902–907PubMedCrossRefGoogle Scholar
  72. 72.
    Corbel V, Akogbeto M, Damien GB et al (2012) Combination of malaria vector control interventions in pyrethroid resistance area in Benin: a cluster randomised controlled trial. Lancet Infect Dis 12:617–626PubMedCrossRefGoogle Scholar
  73. 73.
    Trape JF, Tall A, Diagne N et al (2011) Malaria morbidity and pyrethroid resistance after the introduction of insecticide-treated bednets and artemisinin-based combination therapies: a longitudinal study. Lancet Infect Dis 11:925–932PubMedCrossRefGoogle Scholar
  74. 74.
    Killeen GF (2014) Characterizing, controlling and eliminating residual malaria transmission. Malar J 13:330PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Russell TL, Lwetoijera DW, Maliti D et al (2010) Impact of promoting longer-lasting insecticide treatment of bed nets upon malaria transmission in a rural Tanzanian setting with pre-existing high coverage of untreated nets. Malar J 9:187PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Reddy MR, Overgaard HJ, Abaga S et al (2011) Outdoor host seeking behaviour of Anopheles gambiae mosquitoes following initiation of malaria vector control on Bioko Island, Equatorial Guinea. Malar J 10:184PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Trung HD, Bortel WV, Sochantha T et al (2005) Behavioural heterogeneity of Anopheles species in ecologically different localities in Southeast Asia: a challenge for vector control. Tropical Med Int Health 10:251–262CrossRefGoogle Scholar
  78. 78.
    Moiroux N, Gomez MB, Pennetier C et al (2012) Changes in Anopheles funestus biting behavior following universal coverage of long-lasting insecticidal nets in Benin. J Infect Dis 206:1622–1629PubMedCrossRefGoogle Scholar
  79. 79.
    Durnez L, Coosemans M (2014) Residual transmission of malaria: an old issue for new approaches. In: Manguin SE (ed) Anopheles mosquitoes – new insights into malaria vectors. ISBN: 978-953-51-1188-7 InTechGoogle Scholar
  80. 80.
    Kelly-Hope L, Ranson H, Hemingway J (2008) Lessons from the past: managing insecticide resistance in malaria control and eradication programmes. Lancet Infect Dis 8:387–389PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mamadou Ousmane Ndiath
    • 1
    • 2
  1. 1.G4 Malaria GroupInstitut Pasteur de MadagascarAntananarivoMadagascar
  2. 2.MRC Unit The Gambia at the London School of Hygiene and Tropical MedicineBanjulGambia

Personalised recommendations