Advertisement

Use of Human Fallopian Tube Organ in Culture (FTOC) and Primary Fallopian Tube Epithelial Cells (FTEC) to Study the Biology of Neisseria gonorrhoeae Infection

  • A. Said Álamos-Musre
  • Alejandro Escobar
  • Cecilia V. Tapia
  • Myron Christodoulides
  • Paula I. Rodas
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1997)

Abstract

Epithelial cells represent one of the most important physical barriers to many bacterial pathogens. In the case of Neisseria gonorrhoeae, the epithelial cell response is critical because they are the main target of the tissue damage triggered by the pathogen, particularly when the organism reaches the Fallopian tube (FT). Although the irreversible damage triggered by N. gonorrhoeae in the FT has been previously reported (ectopic pregnancy, pelvic inflammatory disease and infertility), the mechanisms of gonococcal-induced tissue damage are not fully understood. In addition, the lack of animal models that efficiently mimic the human disease and the complexity of gonococcus–host interactions make studying gonococcal pathogenesis particularly difficult. The use of human immortalized cells is also limited, since a variety of commercial FT cell lines is not yet available. Finally, the phase and antigenic variation of many gonococcal surface molecules involved in attachment and invasion of epithelial tissues leads to a failure to reproduce results using different human cells lines used in previous studies. The FT organ in culture (FTOC) and primary human fallopian tube epithelial cell (FTEC) represent the closest ex vivo cell models to explore the biology of Neisseria gonorrhoeae during infection of the FT, since it is a natural host target of the gonococcus. In this chapter, we describe protocols to process human FT samples to obtain FTOC and FTEC and assess their response to infection with Neisseria gonorrhoeae.

Key words

Neisseria gonorrhoeae Human Fallopian tube Explant Primary epithelial cell Infection 

Notes

Acknowledgments

This work was supported by PCI-CONICYT “Apoyo a la Formación de Redes Internacionales Para Investigadores en Etapa Inicial” REDI170370 (P.I.R., C.V.T., A.E., M.C.), UNAB DI-10-17/RG (P.I.R.), and FONDECYT regular 1180666 (A.E., P.I.R.).

References

  1. 1.
    Nasu K, Narahara H (2010) Pattern recognition via the toll-like receptor system in the human female genital tract. Mediators Inflamm 2010:1–12.  https://doi.org/10.1155/2010/976024CrossRefGoogle Scholar
  2. 2.
    Wira CR, Patel MV, Ghosh M et al (2011) Innate immunity in the human female reproductive tract: endocrine regulation of endogenous antimicrobial protection against HIV and other sexually transmitted infections. Am J Reprod Immunol 65:196–211.  https://doi.org/10.1111/j.1600-0897.2011.00970.xCrossRefPubMedGoogle Scholar
  3. 3.
    Rampersaud R, Randis TM, Ratner AJ (2012) Microbiota of the upper and lower genital tract. Semin Fetal Neonatal Med 17:51–57.  https://doi.org/10.1016/j.siny.2011.08.006CrossRefPubMedGoogle Scholar
  4. 4.
    Lyons RA, Saridogan E, Djahanbakhch O (2006) The reproductive significance of human Fallopian tube cilia. Hum Reprod Update 12:363–372.  https://doi.org/10.1093/humupd/dml012CrossRefPubMedGoogle Scholar
  5. 5.
    Lawrenson K, Notaridou M, Lee N et al (2013) In vitro three-dimensional modeling of fallopian tube secretory epithelial cells. BMC Cell Biol 14:43.  https://doi.org/10.1186/1471-2121-14-43CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Karst AM, Drapkin R (2012) Primary culture and immortalization of human fallopian tube secretory epithelial cells. Nat Protoc 7:1755–1764.  https://doi.org/10.1038/nprot.2012.097CrossRefPubMedGoogle Scholar
  7. 7.
    Takeuchi K, Maruyama I, Yamamoto S et al (1991) Isolation and monolayer culture of human fallopian tube epithelial cells. In Vitro Cell Dev Biol 27A:720–724CrossRefGoogle Scholar
  8. 8.
    Brunham RC, Gottlieb SL, Paavonen J (2015) Pelvic inflammatory disease. N Engl J Med 372:2039–2048.  https://doi.org/10.1056/NEJMra1411426CrossRefPubMedGoogle Scholar
  9. 9.
    Duarte R, Fuhrich D, Ross JDC (2015) A review of antibiotic therapy for pelvic inflammatory disease. Int J Antimicrob Agents 46:272–277.  https://doi.org/10.1016/j.ijantimicag.2015.05.004CrossRefPubMedGoogle Scholar
  10. 10.
    Edwards JL, Butler EK (2011) The pathobiology of Neisseria gonorrhoeae lower female genital tract infection. Front Microbiol 2:102.  https://doi.org/10.3389/fmicb.2011.00102CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Singer M, Ouburg S (2016) Effect of cytokine level variations in individuals on the progression and outcome of bacterial urogenital infections—a meta-analysis. Pathog Dis 74:ftv126.  https://doi.org/10.1093/femspd/ftv126CrossRefPubMedGoogle Scholar
  12. 12.
    Skerlev M, Čulav-Košćak I (2014) Gonorrhea: new challenges. Clin Dermatol 32:275–281.  https://doi.org/10.1016/j.clindermatol.2013.08.010CrossRefPubMedGoogle Scholar
  13. 13.
    McGee ZA, Johnson AP, Taylor-Robinson D (1976) Human fallopian tubes in organ culture: preparation, maintenance, and quantitation of damage by pathogenic microorganisms. Infect Immun 13:608–618PubMedPubMedCentralGoogle Scholar
  14. 14.
    McGee ZA, Johnson AP, Taylor-Robinson D (1981) Pathogenic mechanisms of Neisseria gonorrhoeae: observations on damage to human fallopian tubes in organ culture by gonococci of colony type 1 or type 4. J Infect Dis 143:413–422CrossRefGoogle Scholar
  15. 15.
    Gregg CR, Melly MA, Hellerqvist CG et al (1981) Toxic activity of purified lipopolysaccharide of Neisseria gonorrhoeae for human fallopian tube mucosa. J Infect Dis 143:432–439CrossRefGoogle Scholar
  16. 16.
    Cooper MD, McGraw PA, Melly MA (1986) Localization of gonococcal lipopolysaccharide and its relationship to toxic damage in human fallopian tube mucosa. Infect Immun 51:425–430PubMedPubMedCentralGoogle Scholar
  17. 17.
    Melly MA, McGee ZA, Rosenthal RS (1984) Ability of monomeric peptidoglycan fragments from Neisseria gonorrhoeae to damage human fallopian-tube mucosa. J Infect Dis 149:378–386CrossRefGoogle Scholar
  18. 18.
    Stephens DS, McGee ZA, Cooper MD (1987) Cytopathic effects of the pathogenic Neisseria. Studies using human fallopian tube organ cultures and human nasopharyngeal organ cultures. Antonie Van Leeuwenhoek 53:575–584CrossRefGoogle Scholar
  19. 19.
    Johnson AP, Clark JB, Osborn MF et al (1980) A comparison of the association of Neisseria gonorrhoeae with human and guinea-pig genital mucosa maintained in organ culture. Br J Exp Pathol 61:521–527PubMedPubMedCentralGoogle Scholar
  20. 20.
    McGee ZA, Jensen RL, Clemens CM et al (1999) Gonococcal infection of human fallopian tube mucosa in organ culture: relationship of mucosal tissue TNF-alpha concentration to sloughing of ciliated cells. Sex Transm Dis 26:160–165CrossRefGoogle Scholar
  21. 21.
    Virji M (2009) Pathogenic neisseriae: surface modulation, pathogenesis and infection control. Nat Rev Microbiol 7:274–286.  https://doi.org/10.1038/nrmicro2097CrossRefPubMedGoogle Scholar
  22. 22.
    Merz AJ, So M (1997) Attachment of piliated, Opa− and Opc− gonococci and meningococci to epithelial cells elicits cortical actin rearrangements and clustering of tyrosine-phosphorylated proteins. Infect Immun 65:4341–4349PubMedPubMedCentralGoogle Scholar
  23. 23.
    Vink C, Rudenko G, Seifert HS (2012) Microbial antigenic variation mediated by homologous DNA recombination. FEMS Microbiol Rev 36:917–948.  https://doi.org/10.1111/j.1574-6976.2011.00321.xCrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Swanson KV, Jarvis GA, Brooks GF et al (2001) CEACAM is not necessary for Neisseria gonorrhoeae to adhere to and invade female genital epithelial cells. Cell Microbiol 3:681–691CrossRefGoogle Scholar
  25. 25.
    Dehio C, Gray-Owen SD, Meyer TF (1998) The role of neisserial Opa proteins in interactions with host cells. Trends Microbiol 6:489–495CrossRefGoogle Scholar
  26. 26.
    Rodas PI, Pérez D, Jauffret C et al (2017) Modified profile of matrix metalloproteinase-2 and -9 production by human Fallopian tube epithelial cells following infection in vitro with Neisseria gonorrhoeae. J Infect Dis 215:452–455.  https://doi.org/10.1093/infdis/jiw568CrossRefPubMedGoogle Scholar
  27. 27.
    Juica NE, Rodas PI, Solar P et al (2017) Neisseria gonorrhoeae challenge increases matrix metalloproteinase-8 expression in fallopian tube explants. Front Cell Infect Microbiol 7.  https://doi.org/10.3389/fcimb.2017.00399
  28. 28.
    Lambden PR, Heckels JE, James LT et al (1979) Variations in surface protein composition associated with virulence properties in opacity types of Neisseria gonorrhoeae. J Gen Microbiol 114:305–312CrossRefGoogle Scholar
  29. 29.
    Dillard JP (2011) Genetic manipulation of Neisseria gonorrhoeae. Curr Protoc Microbiol. Chapter 4:Unit4A.2.  https://doi.org/10.1002/9780471729259.mc04a02s23
  30. 30.
    D’Ascenzo S, Giusti I, Millimaggi D et al (2004) Intrafollicular expression of matrix metalloproteinases and their inhibitors in normally ovulating women compared with patients undergoing in vitro fertilization treatment. Eur J Endocrinol 151:87–91CrossRefGoogle Scholar
  31. 31.
    Rodríguez-Tirado C, Maisey K, Rodríguez FE et al (2012) Neisseria gonorrhoeae induced disruption of cell junction complexes in epithelial cells of the human genital tract. Microbes Infect 14:290–300.  https://doi.org/10.1016/j.micinf.2011.11.002CrossRefPubMedGoogle Scholar
  32. 32.
    Rodas PI, Álamos-Musre AS, Álvarez FP et al (2016) The NarE protein of Neisseria gonorrhoeae catalyzes ADP-ribosylation of several ADP-ribose acceptors despite an N-terminal deletion. FEMS Microbiol Lett 363:fnw181.  https://doi.org/10.1093/femsle/fnw181CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Schägger H (2006) Tricine-SDS-PAGE. Nat Protoc 1:16–22.  https://doi.org/10.1038/nprot.2006.4CrossRefPubMedGoogle Scholar
  34. 34.
    Utreras E, Ossandon P, Acuña-Castillo C et al (2000) Expression of intercellular adhesion molecule 1 (ICAM-1) on the human oviductal epithelium and mediation of lymphoid cell adherence. J Reprod Fertil 120:115–123CrossRefGoogle Scholar
  35. 35.
    Velasquez L, García K, Morales F et al (2012) Neisseria gonorrhoeae pilus attenuates cytokine response of human fallopian tube explants. J Biomed Biotechnol 2012:491298.  https://doi.org/10.1155/2012/491298CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Maisey K, Nardocci G, Imarai M et al (2003) Expression of proinflammatory cytokines and receptors by human fallopian tubes in organ culture following challenge with Neisseria gonorrhoeae. Infect Immun 71:527–532CrossRefGoogle Scholar
  37. 37.
    Fernandez R, Nelson P, Delgado J et al (2001) Increased adhesiveness and internalization of Neisseria gonorrhoeae and changes in the expression of epithelial gonococcal receptors in the Fallopian tube of copper T and Norplant users. Hum Reprod 16:463–468CrossRefGoogle Scholar
  38. 38.
    Christodoulides M, Everson JS, Liu BL et al (2000) Interaction of primary human endometrial cells with Neisseria gonorrhoeae expressing green fluorescent protein. Mol Microbiol 35:32–43CrossRefGoogle Scholar
  39. 39.
    Ortiz MC, Lefimil C, Rodas PI et al (2015) Neisseria gonorrhoeae modulates immunity by polarizing human macrophages to a M2 profile. PLoS One 10:e0130713.  https://doi.org/10.1371/journal.pone.0130713CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Imarai CM, Rocha A, Acuña C et al (1998) Endocytosis and MHC class II expression by human oviductal epithelium according to stage of the menstrual cycle. Hum Reprod 13:1163–1168CrossRefGoogle Scholar
  41. 41.
    Virji M, Heckels JE, Potts WJ et al (1989) Identification of epitopes recognized by monoclonal antibodies SM1 and SM2 which react with all pili of Neisseria gonorrhoeae but which differentiate between two structural classes of pili expressed by Neisseria meningitidis and the distribution of their encoding sequences in the genomes of Neisseria spp. Microbiology 135:3239–3251.  https://doi.org/10.1099/00221287-135-12-3239CrossRefGoogle Scholar
  42. 42.
    Griffiss JM, Lammel CJ, Wang J et al (1999) Neisseria gonorrhoeae coordinately uses pili and opa to activate HEC-1-B cell microvilli, which causes engulfment of the gonococci. Infect Immun 67:3469–3480PubMedPubMedCentralGoogle Scholar
  43. 43.
    Riss TL, Moravec RA (2004) Use of multiple assay endpoints to investigate the effects of incubation time, dose of toxin and plating density in cell-based cytotoxicity assays. Assay Drug Dev Technol 2:51–62CrossRefGoogle Scholar
  44. 44.
    Sawasdichai A, Chen H-T, Abdul Hamid N et al (2010) In situ subcellular fractionation of adherent and non-adherent mammalian cells. J Vis Exp (41). pii: 1958.  https://doi.org/10.3791/1958
  45. 45.
    Troeberg L, Nagase H (2003) Zymography of metalloproteinases. Curr Protoc Prot Sci Chapter 21:Unit 21.15.  https://doi.org/10.1002/0471140864.ps2115s33

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • A. Said Álamos-Musre
    • 1
  • Alejandro Escobar
    • 2
  • Cecilia V. Tapia
    • 3
  • Myron Christodoulides
    • 4
  • Paula I. Rodas
    • 1
  1. 1.Laboratory of Medical Microbiology and Pathogenesis, Faculty of MedicineUniversidad Andres BelloConcepciónChile
  2. 2.Laboratorio Biología celular y molecular, Instituto de Ciencias Odontológicas, Facultad de OdontologíaUniversidad de ChileSantiagoChile
  3. 3.Laboratorio de EspecialidadClínica DávilaSantiagoChile
  4. 4.Molecular Microbiology Group, Academic Unit of Clinical and Experimental Sciences, Faculty of MedicineUniversity of SouthamptonSouthamptonUK

Personalised recommendations