Advertisement

Use of Human Monocyte-Derived Macrophages to Study Neisseria gonorrhoeae Infection

  • Jimena Gatica
  • Paula I. Rodas
  • Alejandro Escobar
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1997)

Abstract

Macrophages are critical cells in the innate immune response to microorganisms sensed in the tissues. During infections, the interaction between pathogens and macrophages leads to a macrophage response that includes cytokine production, antigen processing and presentation in the context of MHC molecules, expression of T cell costimulatory molecules and recruitment of innate defense effectors, which results in clearance of infection. However, Neisseria gonorrhoeae can suppress the protective immune response at this level, avoiding its detection and elimination. Studies addressed to develop the interactions between macrophages and Neisseria gonorrhoeae allow us to find potential targets to be exploited with vaccines and therapeutic drugs. In this chapter, we describe protocols to generate human monocyte-derived macrophages and assess their response to infection with Neisseria gonorrhoeae.

Key words

Neisseria gonorrhoeae Monocyte-derived macrophages Phagocytosis Cytokines T cell proliferation 

Notes

Acknowledgments

This work was supported by FONDECYT regular 1180666 (J.G., P.I.R., and A.E.). PCI-CONICYT ‘Apoyo a la Formación de Redes Internacionales Para Investigadores en Etapa Inicial’ REDI170370 (P.I.R., A.E.).

References

  1. 1.
    Janeway CJ, Travers P, Walport M et al (2001) Immunobiology: the immune system in health and disease, 5th edn. Garland Science, New YorkGoogle Scholar
  2. 2.
    Cole J, Aberdein J, Jubrail J et al (2014) The role of macrophages in the innate immune response to Streptococcus pneumoniae and Staphylococcus aureus: mechanisms and contrasts. Adv Microb Physiol 65:125–202.  https://doi.org/10.1016/bs.ampbs.2014.08.004CrossRefPubMedGoogle Scholar
  3. 3.
    Vladimer GI, Marty-Roix R, Ghosh S et al (2013) Inflammasomes and host defenses against bacterial infections. Curr Opin Microbiol 16(1):23–31.  https://doi.org/10.1016/j.mib.2012.11.008CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    van de Laar L, Saelens W, De Prijck S et al (2016) Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity 44(4):755–768.  https://doi.org/10.1016/j.immuni.2016.02.017CrossRefPubMedGoogle Scholar
  5. 5.
    Biswas SK, Mantovani A (2010) Macrophage plasticity and interaction with lymphocyte subsets: cancer as a paradigm. Nat Immunol 11(10):889–896.  https://doi.org/10.1038/ni.1937CrossRefGoogle Scholar
  6. 6.
    Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122(3):787–795.  https://doi.org/10.1172/JCI59643CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Benoit M, Desnues B, Mege JL (2008) Macrophage polarization in bacterial infections. J Immunol 181(6):3733–3739CrossRefGoogle Scholar
  8. 8.
    Mege JL, Mehraj V, Capo C (2011) Macrophage polarization and bacterial infections. Curr Opin Infect Dis 24(3):230–234.  https://doi.org/10.1097/QCO.0b013e328344b73eCrossRefPubMedGoogle Scholar
  9. 9.
    Mantovani A, Biswas SK, Galdiero MR et al (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229(2):176–185.  https://doi.org/10.1002/path.4133CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Chateau A, Seifert HS (2016) Neisseria gonorrhoeae survives within and modulates apoptosis and inflammatory cytokine production of human macrophages. Cell Microbiol 18(4):546–560.  https://doi.org/10.1111/cmi.12529CrossRefPubMedGoogle Scholar
  11. 11.
    Ellis CD, Lindner B, Anjam Khan CM et al (2001) The Neisseria gonorrhoeae lpxLII gene encodes for a late-functioning lauroyl acyl transferase, and a null mutation within the gene has a significant effect on the induction of acute inflammatory responses. Mol Microbiol 42(1):167–181CrossRefGoogle Scholar
  12. 12.
    Escobar A, Candia E, Reyes-Cerpa S et al (2013) Neisseria gonorrhoeae induces a tolerogenic phenotype in macrophages to modulate host immunity. Mediat Inflamm 2013:127017.  https://doi.org/10.1155/2013/127017CrossRefGoogle Scholar
  13. 13.
    Knepper B, Heuer I, Meyer TF et al (1997) Differential response of human monocytes to Neisseria gonorrhoeae variants expressing pili and opacity proteins. Infect Immun 65(10):4122–4129PubMedPubMedCentralGoogle Scholar
  14. 14.
    Mosleh IM, Huber LA, Steinlein P et al (1998) Neisseria gonorrhoeae porin modulates phagosome maturation. J Biol Chem 273:35332–35338CrossRefGoogle Scholar
  15. 15.
    Ortiz MC, Lefimil C, Rodas PI et al (2015) Neisseria gonorrhoeae modulates immunity by polarizing human macrophages to a M2 profile. PLoS One 10(6):e0130713.  https://doi.org/10.1371/journal.pone.0130713CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhou X, Gao X, Broglie PM et al (2014) Hexa-acylated lipid A is required for host inflammatory response to Neisseria gonorrhoeae in experimental gonorrhea. Infect Immun 82(1):184–192.  https://doi.org/10.1128/iai.00890-13CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Zughaier SM, Kandler JL, Balthazar JT et al (2015) Phosphoethanolamine modification of Neisseria gonorrhoeae lipid A reduces autophagy flux in macrophages. PLoS One 10(12):e0144347.  https://doi.org/10.1371/journal.pone.0144347CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Lambden PR, Heckels JE, James LT et al (1979) Variations in surface protein composition associated with virulence properties in opacity types of Neisseria gonorrhoeae. J Gen Microbiol 114:305–312CrossRefGoogle Scholar
  19. 19.
    Dillard JP (2011) Genetic manipulation of Neisseria gonorrhoeae. Curr Protoc Microbiol. Chapter 4:Unit4A.2.  https://doi.org/10.1002/9780471729259.mc04a02s23
  20. 20.
    Gomez-Duarte OG, Dehio M, Guzman CA et al (1997) Binding of vitronectin to Opa-expressing Neisseria gonorrhoeae mediates invasion of HeLa cells. Infect Immun 65(9):3857–3866PubMedPubMedCentralGoogle Scholar
  21. 21.
    Thayer JD, Martin JE Jr (1964) A selective medium for the cultivation of N. gonorrhoeae and N. meningitidis. Public Health Rep 79:49–57CrossRefGoogle Scholar
  22. 22.
    Sawasdichai A, Chen HT, Abdul Hamid N et al (2010) In situ subcellular fractionation of adherent and non-adherent mammalian cells. J Vis Exp (41).  https://doi.org/10.3791/1958

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jimena Gatica
    • 1
  • Paula I. Rodas
    • 2
  • Alejandro Escobar
    • 3
  1. 1.Instituto de Investigación en Ciencias Odontológicas, Facultad de OdontologíaUniversidad de ChileSantiagoChile
  2. 2.Laboratory of Medical Microbiology and Pathogenesis, Faculty of MedicineUniversidad Andres BelloConcepciónChile
  3. 3.Laboratorio Biología celular y molecular, Instituto de Ciencias Odontológicas, Facultad de OdontologíaUniversidad de ChileSantiagoChile

Personalised recommendations