Advertisement

Strategies for Global RNA Sequencing of the Human Pathogen Neisseria gonorrhoeae

  • Ryan McClure
  • Caroline A. Genco
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1997)

Abstract

Over the last several years transcriptomic analysis of bacterial pathogens has become easier and less expensive. This technique is used to determine expression levels for all genes of a particular species or collection of species under a given condition, including genes that are not yet known to exist. While transcriptomics can be a powerful tool to better understand bacterial regulatory responses to specific host environments, the experimental approach and data analysis must be performed correctly to ensure robust, accurate, and translational results. Here, we describe experimental protocols related to transcriptomic analysis of the sexually transmitted disease pathogen Neisseria gonorrhoeae. Methods are described for the extraction of high-quality RNA, examination of RNA to ensure quality, the generation of cDNA libraries for sequencing and the downstream analysis of raw sequencing data to determine gene expression levels. Much of this work can be carried out with equipment and reagents that are readily available, and the methods can be performed by a majority of laboratory groups. RNA-seq and transcriptomic analyses are set to become even more common in the coming years. The protocols described here will provide a standardized set of methods for applying this powerful technique to the study of N. gonorrhoeae under a variety of conditions.

Key words

Neisseria gonorrhoeae RNA-seq Transcriptomic RNA cDNA 

Notes

Acknowledgments

The authors wish to thank Drs. Ana Paula Lourenco and Phillip Balzano for their helpful contributions to the manuscript.

References

  1. 1.
    Daou N, Yu C, McClure R et al (2013) Neisseria prophage repressor implicated in gonococcal pathogenesis. Infect Immun 81(10):3652–3661.  https://doi.org/10.1128/iai.00298-13CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Isabella VM, Clark VL (2011) Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae. BMC Genomics 12:51.  https://doi.org/10.1186/1471-2164-12-51CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jackson LA, Day M, Allen J et al (2017) Iron-regulated small RNA expression as Neisseria gonorrhoeae FA 1090 transitions into stationary phase growth. BMC Genomics 18(1):317.  https://doi.org/10.1186/s12864-017-3684-8.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    McClure R, Balasubramanian D, Sun Y et al (2013) Computational analysis of bacterial RNA-Seq data. Nucleic Acids Res 41(14):e140.  https://doi.org/10.1093/nar/gkt444CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    McClure R, Nudel K, Massari P et al (2015) The gonococcal transcriptome during infection of the lower genital tract in women. PLoS One 10(8):e0133982.  https://doi.org/10.1371/journal.pone.0133982CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    McClure R, Tjaden B, Genco C (2014) Identification of sRNAs expressed by the human pathogen Neisseria gonorrhoeae under disparate growth conditions. Front Microbiol 5:456.  https://doi.org/10.3389/fmicb.2014.00456CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Remmele CW, Xian Y, Albrecht M et al (2014) Transcriptional landscape and essential genes of Neisseria gonorrhoeae. Nucleic Acids Res 42(16):10579–10595.  https://doi.org/10.1093/nar/gku762CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Roberts SB, Spencer-Smith R, Shah M et al (2016) Correia repeat enclosed elements and non-coding RNAs in the Neisseria species. Microorganisms 4(3).  https://doi.org/10.3390/microorganisms4030031
  9. 9.
    Wachter J, Hill SA (2015) Small transcriptome analysis indicates that the enzyme RppH influences both the quality and quantity of sRNAs in Neisseria gonorrhoeae. FEMS Microbiol Lett 362(4).  https://doi.org/10.1093/femsle/fnu059
  10. 10.
    Yu C, McClure R, Nudel K et al (2016) Characterization of the Neisseria gonorrhoeae iron and fur regulatory network. J Bacteriol 198(16):2180–2191.  https://doi.org/10.1128/jb.00166-16CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30(15):2114–2120.  https://doi.org/10.1093/bioinformatics/btu170CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc B 57:289–300Google Scholar
  13. 13.
    Liu L, Li Y, Li S et al (2012) Comparison of next-generation sequencing systems. J Biomed Biotechnol 2012:251364.  https://doi.org/10.1155/2012/251364CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Quail MA, Smith M, Coupland P et al (2012) A tale of three next generation sequencing platforms: comparison of Ion Torrent, Pacific Biosciences and Illumina MiSeq sequencers. BMC Genomics 13:341.  https://doi.org/10.1186/1471-2164-13-341CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Salipante SJ, Kawashima T, Rosenthal C et al (2014) Performance comparison of Illumina and ion torrent next-generation sequencing platforms for 16S rRNA-based bacterial community profiling. Appl Environ Microbiol 80(24):7583–7591.  https://doi.org/10.1128/aem.02206-14CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    David M, Dzamba M, Lister D et al (2011) SHRiMP2: sensitive yet practical SHort Read Mapping. Bioinformatics 27(7):1011–1012.  https://doi.org/10.1093/bioinformatics/btr046CrossRefPubMedGoogle Scholar
  17. 17.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2. Nat Methods 9(4):357–359.  https://doi.org/10.1038/nmeth.1923CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Li H, Durbin R (2010) Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26(5):589–595.  https://doi.org/10.1093/bioinformatics/btp698CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Anders S, Pyl PT, Huber W (2015) HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31(2):166–169.  https://doi.org/10.1093/bioinformatics/btu638CrossRefGoogle Scholar
  20. 20.
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550.  https://doi.org/10.1186/s13059-014-0550-8.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Li P, Piao Y, Shon HS et al (2015) Comparing the normalization methods for the differential analysis of Illumina high-throughput RNA-Seq data. BMC Bioinformatics 16:347.  https://doi.org/10.1186/s12859-015-0778-7CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Zyprych-Walczak J, Szabelska A, Handschuh L et al (2015) The impact of normalization methods on RNA-seq data analysis. Biomed Res Int 2015:621690.  https://doi.org/10.1155/2015/621690CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26(1):139–140.  https://doi.org/10.1093/bioinformatics/btp616CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Ryan McClure
    • 1
  • Caroline A. Genco
    • 2
  1. 1.Biological Sciences DivisionPacific Northwest National LaboratoryRichlandUSA
  2. 2.Department of ImmunologyTufts University School of MedicineBostonUSA

Personalised recommendations