Isolation of Stromal Vascular Fraction by Fractionation of Adipose Tissue

  • Joris A. van Dongen
  • Martin C. Harmsen
  • Hieronymus P. Stevens
Part of the Methods in Molecular Biology book series (MIMB, volume 1993)


Adipose tissue-derived stromal cells (ASCs) are a promising candidates for cellular therapy in the field of regenerative medicine. ASCs are multipotent mesenchymal stem cell-like and reside in the stromal vascular fraction (SVF) of adipose tissue with the capacity to secrete a plethora of pro-regenerative growth factors. Future applications of ASCs may be restricted through (trans)national governmental policies that do not allow for use of nonhuman-derived (non-autologous) enzymes to isolate ASC. Besides, enzymatic isolation procedures are also time consuming. To overcome this issue, nonenzymatic isolation procedures to isolate ASCs or the SVF are being developed, such as the fractionation of adipose tissue procedure (FAT). This standardized procedure to isolate the stromal vascular fraction can be performed within 10–12 min. The short procedure time allows for intraoperative isolation of 1 mL of stromal vascular fraction derived from 10 mL of centrifuged adipose tissue. The stromal vascular fraction mostly contains blood vessels, extracellular matrix, and ASCs. However, based on the histological stainings an interdonor variation exists which might result in different therapeutic effects. The existing interdonor variations can be addressed by histological stainings and flow cytometry.

Key words

Stromal vascular fraction Adipose tissue Adipose tissue-derived stromal cells Fractionation Regenerative medicine Cell therapy 


  1. 1.
    Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7(2):211–228CrossRefGoogle Scholar
  2. 2.
    Roux S, Bodivit G, Bartis W et al (2015) In vitro characterization of patches of human mesenchymal stromal cells. Tissue Eng A 21(3-4):417–425CrossRefGoogle Scholar
  3. 3.
    Lin G, Garcia M, Ning H et al (2008) Defining stem and progenitor cells within adipose tissue. Stem Cells Dev 17(6):1053–1063CrossRefGoogle Scholar
  4. 4.
    Corselli M, Chen CW, Sun B, Yap S, Rubin JP, Peault B (2012) The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev 21(8):1299–1308CrossRefGoogle Scholar
  5. 5.
    Bourin P, Bunnell BA, Casteilla L et al (2013) Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15(6):641–648CrossRefGoogle Scholar
  6. 6.
    Grayson WL, Bunnell BA, Martin E, Frazier T, Hung BP, Gimble JM (2015) Stromal cells and stem cells in clinical bone regeneration. Nat Rev Endocrinol 11(3):140–150CrossRefGoogle Scholar
  7. 7.
    Spiekman M, van Dongen JA, Willemsen JC, Hoppe DL, van der Lei B, Harmsen MC (2017) The power of fat and its adipose-derived stromal cells: emerging concepts for fibrotic scar treatment. J Tissue Eng Regen Med 11(11):3220–3235CrossRefGoogle Scholar
  8. 8.
    Bura A, Planat-Benard V, Bourin P et al (2014) Phase I trial: the use of autologous cultured adipose-derived stroma/stem cells to treat patients with non-revascularizable critical limb ischemia. Cytotherapy 16(2):245–257CrossRefGoogle Scholar
  9. 9.
    Jiang Y, Chang P, Pei Y et al (2014) Intramyocardial injection of hypoxia-preconditioned adipose-derived stromal cells treats acute myocardial infarction: an in vivo study in swine. Cell Tissue Res 358(2):417–432CrossRefGoogle Scholar
  10. 10.
    Chen L, Qin F, Ge M, Shu Q, Xu J (2014) Application of adipose-derived stem cells in heart disease. J Cardiovasc Transl Res 7(7):651–663CrossRefGoogle Scholar
  11. 11.
    Klar AS, Zimoch J, Biedermann T (2017) Skin tissue engineering: application of adipose-derived stem cells. Biomed Res Int 2017:9747010CrossRefGoogle Scholar
  12. 12.
    Parvizi M, Bolhuis-Versteeg LA, Poot AA, Harmsen MC (2016) Efficient generation of smooth muscle cells from adipose-derived stromal cells by 3D mechanical stimulation can substitute the use of growth factors in vascular tissue engineering. Biotechnol J 11(7):932–944CrossRefGoogle Scholar
  13. 13.
    van Dongen JA, Tuin AJ, Spiekman M, Jansma J, van der Lei B, Harmsen MC (2018) Comparison of intraoperative procedures for isolation of clinical grade stromal vascular fraction for regenerative purposes: a systematic review. J Tissue Eng Regen Med 12(1):e261–e274. Scholar
  14. 14.
    Tonnard P, Verpaele A, Peeters G, Hamdi M, Cornelissen M, Declercq H (2013) Nanofat grafting: basic research and clinical applications. Plast Reconstr Surg 132(4):1017–1026CrossRefGoogle Scholar
  15. 15.
    Parvizi M, Harmsen MC (2015) Therapeutic prospect of adipose-derived stromal cells for the treatment of abdominal aortic aneurysm. Stem Cells Dev 24(13):1493–1505CrossRefGoogle Scholar
  16. 16.
    van Dongen JA, Stevens HP, Parvizi M, van der Lei B, Harmsen MC (2016) The fractionation of adipose tissue procedure to obtain stromal vascular fractions for regenerative purposes. Wound Repair Regen 24(6):994–1003CrossRefGoogle Scholar
  17. 17.
    Stasch T, Hoehne J, Huynh T, De Baerdemaeker R, Grandel S, Herold C (2015) Debridement and autologous lipotransfer for chronic ulceration of the diabetic foot and lower limb improves wound healing. Plast Reconstr Surg 136(6):1357–1366CrossRefGoogle Scholar
  18. 18.
    Raposio E, Bertozzi N, Bonomini S et al (2016) Adipose-derived stem cells added to platelet-rich plasma for chronic skin ulcer therapy. Wounds 28(4):126–131PubMedGoogle Scholar
  19. 19.
    Conde-Green A, Marano AA, Lee ES et al (2016) Fat grafting and adipose-derived regenerative cells in burn wound healing and scarring: a systematic review of the literature. Plast Reconstr Surg 137(1):302–312CrossRefGoogle Scholar
  20. 20.
    Corselli M, Crisan M, Murray IR et al (2013) Identification of perivascular mesenchymal stromal/stem cells by flow cytometry. Cytometry A 83(8):714–720CrossRefGoogle Scholar
  21. 21.
    Zimmerlin L, Donnenberg VS, Pfeifer ME et al (2010) Stromal vascular progenitors in adult human adipose tissue. Cytometry A 77(1):22–30PubMedPubMedCentralGoogle Scholar
  22. 22.
    Traktuev DO, Merfeld-Clauss S, Li J et al (2008) A population of multipotent CD34-positive adipose stromal cells share pericyte and mesenchymal surface markers, reside in a periendothelial location, and stabilize endothelial networks. Circ Res 102(1):77–85CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Joris A. van Dongen
    • 1
    • 2
  • Martin C. Harmsen
    • 2
  • Hieronymus P. Stevens
    • 1
  1. 1.Plastic Surgery DepartmentVelthuis KliniekRotterdamThe Netherlands
  2. 2.Department of Pathology and Medical BiologyUniversity of Groningen and University Medical Centre of GroningenGroningenThe Netherlands

Personalised recommendations