Advertisement

Polysaccharide-Based Chiral Stationary Phases for Enantioseparations by High-Performance Liquid Chromatography: An Overview

  • Bezhan Chankvetadze
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1985)

Abstract

This chapter summarizes the application of polysaccharide-based chiral stationary phases (CSPs) for separation of enantiomers in high-performance liquid chromatography (HPLC). Since this book contains dedicated chapters on enantioseparations using supercritical fluid chromatography (SFC), or capillary electrochromatography (CEC), the application of polysaccharide-based materials in these modes of liquid-phase separation techniques is touched just superficially. Special emphasis is directed toward a discussion of the optimization of polysaccharide-based chiral selectors, their attachment onto the carrier, and the optimization of the support. The optimization of the separation of enantiomers based on various parameters such as mobile phase composition and temperature is discussed.

Key words

Enantioseparations Chiral stationary phase Polysaccharide-based stationary phase Cellulose derivative Amylose derivative Polysaccharide phenylcarbamates 

References

  1. 1.
    Willstätter R (1904) Über einen Versuch zur Theorie des Färbens. Ber Dtsch Chem Ges 37:3758–3760Google Scholar
  2. 2.
    Henderson GM, Rule HG (1939) A new method of resolving a racemic compound. J Chem Soc:1568–1573Google Scholar
  3. 3.
    Prelog V, Wieland P (1944) Über die Spaltung der Tröger'schen Base in optische Antipoden, ein Beitrag zur Stereochemie des dreiwertigen Stickstoffs. Helv Chim Acta 27:1127–1134Google Scholar
  4. 4.
    Kotake M, Sakan T, Nakamura N, Senoh S (1951) Resolution into optical isomers of some amino acids by paper chromatography. J Am Chem Soc 73:2973–2974Google Scholar
  5. 5.
    Mayer W, Merger F (1961) Darstellung optisch aktiver Catechine durch Racemattrennung mit Hilfe der Adsorptionschromatographie an Cellulose. Liebigs Ann Chem 644:65–69Google Scholar
  6. 6.
    Lüttringhaus A, Hess U, Rosenbaum HJ (1967) Conformational enantiomerism. I. Optically active 4,5,6,7-dibenzo-1,2-dithiacyclooctadiene. Z Naturforsch B 22:296–1300Google Scholar
  7. 7.
    Hesse G, Hagel R (1973) A complete separation of a racemic mixture by elution chromatography on cellulose triacetate. Chromatographia 6:277–280Google Scholar
  8. 8.
    Steckelberg W, Bloch M, Musso H (1968) Notiz zur Antipodentrennung von Biphenylderivaten durch Chromatographie. Chem Ber 101:1519–1521Google Scholar
  9. 9.
    Krebs H, Wagner JA, Diewald J (1956) Über die chromatographische Spaltung von Racematen III. Versuche zur Aktivierung organischer Hydroxy- und Aminoverbindungen mit asymmetrischem C-Atom. Chem Ber 89:1875–1883Google Scholar
  10. 10.
    Blaschke G (1980) Chromatographic resolution of racemates. Angew Chem Inl Ed Engl 19:13–24Google Scholar
  11. 11.
    Francotte E, Wolf RM, Lohmann D, Mueller R (1985) Chromatographic resolution of racemates on chiral stationary phases. I. Influence of the supramolecular structure of cellulose triacetate. J Chromatogr 347:25–37Google Scholar
  12. 12.
    Koller H, Rimböck K-H, Mannschreck A (1983) A high-pressure liquid chromatography on triacetylcellulose. Characterization of a sorbent for the separation of enantiomers. J Chromatogr 282:89–94Google Scholar
  13. 13.
    Okamoto Y, Kawashima M, Hatada K (1984) Useful chiral packing materials for high-performance liquid chromatographic resolution of enantiomers: Phenylcarbamates of polysaccharide coated on silica gel. J Am Chem Soc 106:5357–5359Google Scholar
  14. 14.
    Ikai T, Okamoto Y (2009) Structure control of polysaccharide derivatives for efficient separation of enantiomers by chromatography. Chem Rev 109:6077–6101PubMedPubMedCentralGoogle Scholar
  15. 15.
    Okamoto Y, Kawashima M, Yamamoto K, Hatada K (1984) Useful chiral packing materials for high-performance liquid chromatographic resolution: cellulose triacetate and tribenzoate coated on silica gel. Chem Lett 13:739–740Google Scholar
  16. 16.
    Ikai T, Yamamoto C, Kamigaito M, Okamoto Y (2005) Enantioseparation by HPLC using phenylcarbonate, benzoylformate, p-toluenesulfonylcarbamate, and benzoylcarbamates of cellulose and amylose as chiral stationary phases. Chirality 17:299–304PubMedGoogle Scholar
  17. 17.
    Ichida A, Shibata T, Okamoto I, Yuki Y, Namikoshi H, Toda Y (1984) Resolution of enantiomers by HPLC on cellulose derivatives. Chromatographia 19:280–284Google Scholar
  18. 18.
    Okamoto Y, Aburatani R, Hatada K (1987) Chromatographic chiral resolution. XIV. Cellulose tribenzoate derivatives as chiral stationary phase for high-performance liquid chromatography. J Chromatogr 389:95–102Google Scholar
  19. 19.
    Okamoto Y, Kawashima M, Hatada K (1986) Controlled chiral recognition of cellulose triphenylcarbamate derivatives supported on silica gel. J Chromatogr 363:173–186Google Scholar
  20. 20.
    Yamamoto C, Yamada K, Motoya K, Kamiya Y, Kamigaito M, Okamoto Y, Aratani T (2006) Preparation of HPLC chiral packing materials using cellulose tris(4-methylbenzoate) for the separation of chrysanthemate isomers. J Polym Sci Part A Polym Chem 44:5087–5097Google Scholar
  21. 21.
    Okamoto Y, Aburatani R, Fukumoto T, Hatada K (1987) Useful chiral stationary phases for HPLC. Amylose tris(3,5-dimethylphenylcarbamate) and amylose tris(3,5-dichlorophenylcarbamate). Chem Lett 16:1857–1860Google Scholar
  22. 22.
    Chankvetadze B, Yashima E, Okamoto Y (1993) Tris(chloro- and methyl-disubstituted phenylcarbamate)s of cellulose as chiral stationary phases for chromatographic enantioseparation. Chem Lett 22:617–620Google Scholar
  23. 23.
    Chankvetadze B, Yashima E, Okamoto Y (1994) Chloro-methyl-phenylcarbamate derivatives of cellulose as chiral stationary phases for high performance liquid chromatography. J Chromatogr A 670:39–49Google Scholar
  24. 24.
    Chankvetadze B, Yashima E, Okamoto Y (1995) Dimethyl-, dichloro- and chloromethyl-phenylcarbamate derivatives of amylose as chiral stationary phases for high performance liquid chromatography. J Chromatogr A 694:101–109Google Scholar
  25. 25.
    Chankvetadze B, Chankvetadze L, Sidamonidze S, Kasashima E, Yashima E Okamoto Y (1997) 3-Fluoro-, 3-bromo-, and 3-chloro-5-methylphenylcarbamates of cellulose and amylose as chiral stationary phases for HPLC enantioseparation. J Chromatog A 787:67–77Google Scholar
  26. 26.
    Yamamoto, Okamoto Y (2004) Optically active polymers for chiral separation. Bull Chem Soc Jpn 77:227–257Google Scholar
  27. 27.
    Chankvetadze B, Chankvetadze L, Sidamonidze S, Yashima E, Okamoto Y (1996) High-performance liquid chromatography enantioseparation of chiral pharmaceuticals using tris(chloro-methylphenylcarbamate)s of cellulose. J Pharm Biomed Anal 14:1295–1303PubMedGoogle Scholar
  28. 28.
    Felix G (2001) Regioselectively modified polysaccharide derivatives as chiral stationary phases in high-performance liquid chromatography. J Chromatogr A 906:171–184PubMedGoogle Scholar
  29. 29.
    Kaida Y, Okamoto Y (1993) Optical resolution on regioselectively carbamoylated cellulose and amylose with 3,5-dimethylphenyl and 3,5-dichlorophenyl isocyanates. Bull Chem Soc Jpn 66:2225–2232Google Scholar
  30. 30.
    Kondo S, Yamamoto C, Kamigaito M, Okamoto Y (2008) Synthesis and chiral recognition of novel regioselectively substituted amylose derivatives. Chem Lett 37:558–559Google Scholar
  31. 31.
    Francotte ER, Wolf W (1991) Benzoyl cellulose beads in the pure polymeric form as a new powerful sorbent for the chromatographic resolution of racemates. Chirality 3:43–55Google Scholar
  32. 32.
    Ikai T, Muraki R, Yamamoto C, Kamigaito M, Okamoto Y (2004) Cellulose derivative-based beads as chiral stationary phase for HPLC. Chem Lett 33:1188–1189Google Scholar
  33. 33.
    Ikai T, Yamamoto C, Kamigaito M, Okamoto Y (2008) Organic-inorganic hybrid materials for efficient enantioseparation using cellulose 3,5-dimethylphenylcarbamate and tetraethyl orthosilicate. Chem Asian J 3:1494–1499PubMedPubMedCentralGoogle Scholar
  34. 34.
    Park J-H, Whang Y-C, Jung Y-J, Okamoto Y, Yamamoto C, Carr PW, McNeff CV (2003) Separation of racemic compounds on amylose and cellulose dimethylphenylcarbamate-coated zirconia in HPLC. J Sep Sci 26:1331–1336Google Scholar
  35. 35.
    Xu H, Zhang Y, Lu Q (2009) Polysaccharide-based chiral stationary phases and method for their preparation, US Patent application number 0216006Google Scholar
  36. 36.
    Seo Y-J, Kang G-W, Park S-T, Moon M, Park J-H, Cheong W-J (2007) Titanized or zirconized porous silica modified with a cellulose derivative as new chiral stationary phases. Bull Kor Chem Soc 28:999–1004Google Scholar
  37. 37.
    Ling F, Brahmachary E, Xu M, Svec F, Fréchet JMJ (2003) Polymer-bound cellulose phenylcarbamate derivatives as chiral stationary phases for enantioselective HPLC. J Sep Sci 26:1337–1346Google Scholar
  38. 38.
    Chankvetadze B, Yamamoto C, Okamoto Y (2003) Very fast enantioseparations in HPLC using cellulose tris(3,5-dimethylphenylcarbamate) as chiral stationary phase. Chem Lett 32:850–851Google Scholar
  39. 39.
    Chankvetadze B, Ikai T, Yamamoto C, Okamoto Y (2004) High-performance liquid chromatographic enantioseparations on monolithic silica column containing covalently attached 3,5-dimethylphenylcarbamate derivative of cellulose. J Chromatogr A 1042:55–60PubMedGoogle Scholar
  40. 40.
    Guiochon G, Gritti F (2011) Shell particles, trials, tribulations and triumphs. J Chromatogr A 1218:1915–1938PubMedGoogle Scholar
  41. 41.
    Lomsadze K, Jibuti G, Farkas T, Chankvetadze B (2012) Comparative high-performance liquid chromatography enantioseparations on polysaccharide based chiral stationary phases prepared by coating totally porous and core-shell silica particles. J Chromatogr A 1234:50–55PubMedGoogle Scholar
  42. 42.
    Kharaishvili Q, Jibuti G, Farkas T, Chankvetadze B (2016) Further proof to the utility of polysaccharide-based chiral selectors in combination with superficially porous silica particles as effective chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. J Chromatogr A 1467:163–168PubMedGoogle Scholar
  43. 43.
    Bezhitashvili L, Bardavelidze A, Ordjonikidze T, Farkas T, Chity M, Chankvetadze B (2017) Effect of pore-size optimization on the performance of polysaccharide-based superficially porous chiral stationary phases for separation of enantiomers in high-performance liquid chromatography. J Chromatogr A 1482:32–38PubMedGoogle Scholar
  44. 44.
    Bezhitashvili L, Bardavelidze A, Mskhiladze A, Volonterio A, Gumustas M, Ozkan S, Farkas T, Chankvetadze B (2018) Application of cellulose 3,5-dichlorophenylcarbamate covalently immobilized on superficially porous silica for separation of enantiomers in ultra high-performance liquid chromatography. J Chromatogr A 1571:132–139PubMedGoogle Scholar
  45. 45.
    Khundadze N, Pantsulaia S, Fanali C, Farkas T, Chankvetadze B (2018) On our way to sub-second separations of enantiomers in high-performance liquid chromatography. J Chromatogr A 1572:37–43PubMedGoogle Scholar
  46. 46.
    Okamoto Y, Aburatani R, Miura S, Hatada K (1987) Chiral stationary phases for HPLC: cellulose tris(3,5-dimethylphenylcarbamate) and tris(3,5-dichlorophenylcarbamate) chemically bonded to silica gel. J Liq Chromatogr 10:1613–1628Google Scholar
  47. 47.
    Franco P, Senso A, Oliveros L, Minguillon C (2001) Covalently bonded polysaccharide derivatives as chiral stationary phases in high-performance liquid chromatography. J Chromatogr A 906:155–170PubMedGoogle Scholar
  48. 48.
    Yashima E, Fukaya H, Okamoto Y (1994) 3,5-Dimethylphenylcarbamates of cellulose and amylose regioselectively bonded to silica gel as chiral stationary phases for high-performance liquid chromatography. J Chromatogr A 677:11–19Google Scholar
  49. 49.
    Kimata K, Tsuboi R, Hosoya K, Tanaka N (1993) Chemically bonded chiral stationary phase prepared by the polymerization of cellulose p-vinylbenzoate. Anal Methods Instrum 1:23–29Google Scholar
  50. 50.
    Oliveros L, Lopez P, Minguillon C, Franco P (1995) Chiral chromatographic discrimination ability of a cellulose 3,5-dimethyl-phenylcarbamate/10-undecenoate mixed derivative fixed on several chromatographic matrices. J Liq Chromatogr 18:152–1532Google Scholar
  51. 51.
    Chen X, Jin W, Qin F, Liu Y, Zou H, Guo B (2003) Capillary electrochromatographic separation of enantiomers on chemically bonded type of cellulose derivative chiral stationary phases with a positively charged spacer. Electrophoresis 24:2559–2566PubMedGoogle Scholar
  52. 52.
    Enomoto N, Furukawa S, Ogasawara Y, Akano H, Kawamura Y, Yashima E, Okamoto Y (1996) Preparation of silica gel-bonded amylose trough enzyme-catalyzed polymerization and chiral recognition ability of its phenylcarbamate derivatives in HPLC. Anal Chem 68:2798–2804PubMedGoogle Scholar
  53. 53.
    Kubota T, Yamamoto C, Okamoto Y (2004) Phenylcarbamate derivatives of cellulose and amylose immobilized onto silica gel as chiral stationary phases for high performance liquid chromatography. J Polym Sci Part A: Polym Chem 42:4704–4710Google Scholar
  54. 54.
    Chen X, Yamamoto C, Okamoto Y (2006) One-pot synthesis of polysaccharide 3,5-dimethylphenylcarbamates having a random vinyl group for immobilization on silica gel as chiral stationary phases. J Sep Sci 29:1432–1439PubMedGoogle Scholar
  55. 55.
    Francotte E, Huynh D (2002) Immobilized halogenphenylcarbamate derivatives of cellulose as novel stationary phases for enantioselective drug analysis. J Pharm Biomed Anal 27:421–429PubMedGoogle Scholar
  56. 56.
    Francotte E, Huynh D, Zhang T (2016) Photochemically immobilized 4-methylbenzoyl cellulose as a powerful chiral stationary phase for enantioselective chromatography. Molecules 21 (12) article number 1740.PubMedCentralGoogle Scholar
  57. 57.
    Chen X, Liu Y, Qin F, Kong L, Zou H (2003) Synthesis of covalently bonded cellulose derivative chiral stationary phases with a bifunctional reagent of 3-(triethoxysilyl)propyl isocyanate. J Chromatogr A 1010:185–194PubMedGoogle Scholar
  58. 58.
    Ikai T, Yamamoto C, Kamigaito M, Okamoto Y (2006) Efficient immobilization of cellulose phenylcarbamate bearing alkoxysilyl group onto silica gel by intermolecular polycondensation and its chiral recognition. Chem Lett 35:1250–1251Google Scholar
  59. 59.
    Ikai T, Yamamoto C, Kamigaito M, Okamoto Y (2007) Immobilization of polysaccharide derivatives onto silica gel. Facile synthesis of chiral packing materials by means of intermolecular polycondensation of triethoxysilyl groups. J Chromatogr A 1157:151–158PubMedPubMedCentralGoogle Scholar
  60. 60.
    Shen J, Ikai T, Okamoto Y (2014) Synthesis and application of immobilized polysaccharide-based chiral stationary phases for enantioseparation by high-performance liquid chromatography. J Chromatogr A 1363:51–61Google Scholar
  61. 61.
    Ghanem A, Naim L (2006) Immobilized versus coated amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phases for the enantioselective separation of cyclopropane derivatives by liquid chromatography. J Chromatogr A 1101:171–178PubMedGoogle Scholar
  62. 62.
    Venthuyne N, Andreoli F, Fernandez S, Roussel C (2005) Reversal of elution order with immobilization of chiral selector, Poster presentation on 17-th International Symposium on Chirality, Parma, Italy, September 11–14Google Scholar
  63. 63.
    Tachibana K, Ohnishi A (2001) Reversed-phase liquid chromatographic separation of enantiomers on polysaccharide type chiral stationary phases. J Chromatogr A 906:127–154PubMedPubMedCentralGoogle Scholar
  64. 64.
    Chankvetadze B, Kartozia I, Yamamoto C, Okamoto Y (2002) Comparative enantioseparation of selected chiral drugs on four different polysaccharide-type chiral stationary phases using polar organic mobile phases. J Pharm Biomed Anal 27:467–478PubMedGoogle Scholar
  65. 65.
    Chankvetadze B, Yamamoto C, Okamoto Y (2000) HPLC Enantioseparation with cellulose tris(3,5-dichlorophenylcarbamate) in aqueous methanol as a mobile phase. Chem Lett 29:352–353Google Scholar
  66. 66.
    Chankvetadze B, Yamamoto C, Okamoto Y (2000) Enantioseparations using cellulose tris(3,5-dichlorophenylcarbamate) in high-performance liquid chromatography in common size and capillary columns: potential for screening of chiral compounds. Comb Chem High Trough Scr 3:497–508Google Scholar
  67. 67.
    Chankvetadze B, Yamamoto C, Okamoto Y (2000) Extremely high enantiomer recognition in HPLC separation of racemic 2-(benzylsulfinyl)benzamide using cellulose tris (3,5-dichlorophenylcarbamate) as a chiral stationary phase. Chem Lett 29:1176–1177Google Scholar
  68. 68.
    Peng L, Jayapalan S, Chankvetadze B, Farkas T (2010) Reversed phase chiral HPLC and LC/MS analysis with tris(Chloromethylphenylcarbamate) derivatives of cellulose and amylose as chiral stationary phases. J Chromatogr A 1217:6942–6955PubMedGoogle Scholar
  69. 69.
    Dossou KSS, Chiap P, Chankvetadze B, Servais AC, Fillet M, Crommen J (2009) Enantiomer resolution of basic pharmaceuticals using cellulose tris(4-chloro-3-methylphenylcarbamate) as chiral stationary phase and polar organic mobile phases. J Chromatogr A 1216:7450–7455PubMedGoogle Scholar
  70. 70.
    Dossou KSS, Chiap P, Chankvetadze B, Servais AC, Fillet M, Crommen J (2010) Optimization of chiral pharmaceuticals enantioseparation using a coated stationary phase with cellulose tris(4-chloro-3-methyl-phenylcarbamate) as chiral selector and non-aqueous polar mobile phase. J Sep Sci 33:1699–1707PubMedGoogle Scholar
  71. 71.
    Ates H, Mangelings D, Vander Heyden Y (2008) Chiral separations in polar organic solvent chromatography: updating a screening strategy with new chlorine-containing polysaccharide-based selectors. J Chromatogr B 875:57–64Google Scholar
  72. 72.
    Zhou L, Antonucci V, Biba M, Gong X, Ge Z (2010) Simultaneous enantioseparation of a basic active pharmaceutical ingredient compound and its neutral intermediate using reversed phase and normal phase liquid chromatography with a new type of polysaccharide stationary phase. J Pharm Biomed Anal 51:153–157PubMedGoogle Scholar
  73. 73.
    Francotte E, Jung M (1996) Enantiomer separation by open-tubular liquid chromatography and electrochromatography in cellulose-coated capillaries. Chromatographia 42:541–547Google Scholar
  74. 74.
    Wakita T, Chankvetadze B, Yamamoto C, Okamoto Y (2002) Chromatographic enantioseparation on capillary column containing covalently bound cellulose (3,5-dichlorophenylcarbamate) as chiral stationary phase. J Sep Sci 25:167–169Google Scholar
  75. 75.
    Krause K, Girod M, Chankvetadze B, Blaschke G (1999) Enantioseparations in normal- and reversed-phase nano-HPLC and capillary electrochromatography using polyacrylamide and polysaccharide derivatives as chiral stationary phases. J Chromatogr A 837:51–63Google Scholar
  76. 76.
    Meyring M, Chankvetadze B, Blaschke G (2000) Simultaneous separation and enantioseparation of thalidomide and its hydroxylated metabolites using high performance liquid chromatography in common-size columns, capillary liquid chromatography and nonaqueous capillary electrochromatography. J Chromatogr A 876:157–167PubMedGoogle Scholar
  77. 77.
    Kawamura K, Otsuka K, Terabe S (2001) Capillary electrochromatographic enantioseparations using a packed capillary with a 3 μm OD-type chiral packing. J Chromatogr A 924:251–257PubMedGoogle Scholar
  78. 78.
    Fanali S, D’Orazio G, Lomsadze K, Chankvetadze B (2008) Enantioseparations with cellulose(3-chloro-4-methylphenylcarbamate) in nano liquid chromatography and capillary electrochromatography. J Chromatogr B 875:296–303Google Scholar
  79. 79.
    Domínguez-Vega E, Crego AL, Lomsadze K, Chankvetadze B, Marina ML (2011) Enantiomeric separation of FMOC-amino acids by nano-LC and CEC using a new chiral stationary phase, cellulose tris(3-chloro-4-methylphenylcarbamate). Electrophoresis 32:2700–2707PubMedGoogle Scholar
  80. 80.
    Chankvetadze B, Yamamoto C, Tanaka N, Nakanishi K, Okamoto Y (2004) Enantioseparations on monolithic silica capillary column modified with cellulose tris(3,5-dimethylphenylcarbamate). J Sep Sci 27:905–911PubMedGoogle Scholar
  81. 81.
    Chankvetadze B, Kubota T, Ikai T, Yamamoto C, Tanaka N, Nakanishi K, Okamoto Y (2006) High-performance liquid chromatographic enantioseparations on capillary columns containing crosslinked polysaccharide phenylcarbamate derivatives attached to monolithic silica. J Sep Sci 29:1988–1995PubMedGoogle Scholar
  82. 82.
    Chankvetadze B, Yamamoto C, Kamigaito M, Tanaka N, Nakanishi K, Okamoto Y (2006) High-performance liquid chromatographic enantioseparations on capillary columns containing monolithic silica modified with amylose tris(3,5-dimethylphenylcarbamate). J Chromatogr A 1110:46–52PubMedGoogle Scholar
  83. 83.
    Zhang Z, Wu R, Wu M, Zou H (2010) Recent progress of chiral monolithic stationary phases in CEC and capillary LC. Electrophoresis 31:1457–1466PubMedGoogle Scholar
  84. 84.
    Francotte E (2001) Enantioselective chromatography as a powerful alternative for the preparation of drug enantiomers. J Chromatogr A 906:379–397PubMedGoogle Scholar
  85. 85.
    Leek H, Thunberg L, Jonson AC, Öhlén K, Klarqvist M (2017) Strategy for large-scale isolation of enantiomers in drug discovery. Drug Discov Today 22:133–139PubMedGoogle Scholar
  86. 86.
    Shen J, Okamoto Y (2016) Efficient separation of enantiomers using Stereoregular chiral polymers. Chem Rev 116:1094–1138PubMedGoogle Scholar
  87. 87.
    Padró JM, Keunchkarian S (2018) State-of-the-art and recent developments of immobilized polysaccharide-based chiral stationary phases for enantioseparations by high-performance liquid chromatography (2013–2017). Microchim J 140:142–157Google Scholar
  88. 88.
    Lomsadze K, Merlani M, Barbakadze V, Farkas T, Chankvetadze B (2012) Enantioseparation of chiral epoxides with polysaccharide-based chiral columns in HPLC. Chromatographia 75:839–845Google Scholar
  89. 89.
    Pinaka A, Vougioukalakis GC, Dimotikali D, Yannakopoulou E, Chankvetadze B, Papadopoulos K (2013) Green asymmetric synthesis: β-amino alcohol-catalyzed direct asymmetric aldol reactions in aqueous micelles. Chirality 25:119–125PubMedGoogle Scholar
  90. 90.
    Matarashvili I, Shvangiradze I, Chankvetadze L, Sidamonidze S, Takaishvili N, Farkas T, Chankvetadze B (2015) High-performance liquid chromatographic separation of stereoisomers of chiral triazole derivatives with polysaccharide-based chiral columns and polar organic mobile phases. J Sep Sci 38:4173–4179PubMedGoogle Scholar
  91. 91.
    Chankvetadze L, Ghibradze N, Karchkhadze M, Peng L, Farkas T, Chankvetadze B (2011) Enantiomer elution order reversal of FMOC-isoleucine by variation of mobile phase temperature and composition. J Chromatogr A 1218:6554–6560PubMedGoogle Scholar
  92. 92.
    Okamoto M (2002) Reversal of elution order during the chiral separation in high performance liquid chromatography. J Pharm Biomed Anal 27:401–407PubMedGoogle Scholar
  93. 93.
    Cirilli R, Ferretti R, Gallinella B, Zanitti L, La Torre F (2004) A new application of stopped-flow chiral HPLC: inversion of enantiomer elution order. J Chromatogr A 1061:27–34PubMedGoogle Scholar
  94. 94.
    Wang F, O’Brien T, Dowling T, Bicker G, Wyvratt J (2002) Unusual effect of column temperature on chromatographic enantioseparation of dihydropyrimidinone acid and methyl ester on amylose chiral stationary phase. J Chromatogr A 958:69–77PubMedGoogle Scholar
  95. 95.
    Ma S, Shen S, Lee H, Eriksson M, Zeng X, Xu J, Fandrick K, Yee N, Senanayake C, Grinberg N (2009) Mechanistic studies on the chiral recognition of polysaccharide-based chiral stationary phases using liquid chromatography and vibrational circular dichroism. Reversal of elution order of N-substituted alpha-methyl phenylalanine esters. J Chromatogr A 1216:3784–3793PubMedGoogle Scholar
  96. 96.
    Dossou KSS, Edorh PA, Chiap P, Chankvetadze B, Servais A-C, Fillet M, Crommen J (2011) LC method for the enantiomeric purity determination of S-amlodipine with the special emphasis on the reversal of the enantiomer elution order using chlorinated cellulose-based chiral stationary phases and polar non-aqueous mobile phases. J Sep Sci 34:1772–1780PubMedGoogle Scholar
  97. 97.
    Chankvetadze B, Yamamoto C, Okamoto Y (2001) Enantioseparation of selected chiral sulfoxides using polysaccharide-type chiral stationary phases and polar organic, polar aqueous-organic and normal-phase eluents. J Chromatogr A 922:127–137PubMedPubMedCentralGoogle Scholar
  98. 98.
    Matarashvili I, Ghughunishvili D, Chankvetadze L, Takaishvili N, Tsintsadze M, Khatiashvili T, Farkas T, Chankvetadze B (2017) Separation of enantiomers of chiral weak acids with polysaccharide-based chiral columns and aqueous mobile phases in high-performance liquid chromatography: typical reversed-phase behavior? J Chromatogr A 1483:86–92PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bezhan Chankvetadze
    • 1
  1. 1.Institute of Physical and Analytical Chemistry, School of Exact and Natural SciencesTbilisi State UniversityTbilisiGeorgia

Personalised recommendations