Enantioseparations by Gas Chromatography Using Porous Organic Cages as Stationary Phase

  • Sheng-Ming Xie
  • Jun-Hui Zhang
  • Li-Ming Yuan
Part of the Methods in Molecular Biology book series (MIMB, volume 1985)


The resolution of chiral compounds into optically pure enantiomers is very important in various fields, such as pharmaceutical, chemical, agricultural, and food industries. Chiral gas chromatography (GC) is one of the efficient methods for enantioseparations of volatile compounds. In recent years, porous materials as stationary phases for chromatographic separations have achieved increasing attention. Porous organic cages (POCs) represent an emerging class of porous materials, which are assembled by discrete organic molecules with shape-persistent and permanent cavities through weak intermolecular forces. This chapter describes several chiral POCs as chiral stationary phases for GC enantioseparations of racemic compounds.

Key words

Enantioseparation Chiral stationary phase Gas chromatography Porous material Porous organic cage 



This work was supported by the National Natural Science Foundation (Nos. 21765025, 21705142, 21675141, 21365024) of China and Applied Basic Research Foundation of Yunnan Province (No. 2017FB013).


  1. 1.
    Maier N, Franco P, Lindner W (2001) Separation of enantiomers: needs, challenges, perspectives. J Chromatogr A 906:3–33CrossRefGoogle Scholar
  2. 2.
    Gil-Av E, Feibush B, Charles-Sigler R (1966) Separation of enantiomers by gas liquid chromatography with an optically active stationary phase. Tetrahedron Lett 7:1009–1015CrossRefGoogle Scholar
  3. 3.
    Schurig V (2011) Separation of enantiomers by gas chromatography on chiral stationary phases, Chapter 9. In: Ahuja S (ed) Chiral separation methods. Wiley, Hoboken, pp 251–297Google Scholar
  4. 4.
    Gu ZY, Yan XP (2010) Metal-organic framework MIL-101 for high-resolution gas-chromatographic separation of xylene isomers and ethylbenzene. Angew Chem Int Ed 49:1477–1480CrossRefGoogle Scholar
  5. 5.
    Zhang M, Pu ZJ, Chen XL, Gong XL, Zhu AX, Yuan LM (2013) Chiral recognition of a 3D chiral nanoporous metal-organic framework. Chem Commun 49:5201–5203CrossRefGoogle Scholar
  6. 6.
    Qian HL, Yang CX, Yan XP (2016) Bottom-up synthesis of chiral covalent organic frameworks and their bound capillaries for chiral separation. Nat Commun 7:12104CrossRefGoogle Scholar
  7. 7.
    Han X, Huang JJ, Yuan C, Liu Y, Cui Y (2018) Chiral 3D covalent organic frameworks for high performance liquid chromatographic enantioseparation. J Am Chem Soc 140:892–895CrossRefGoogle Scholar
  8. 8.
    Zhang JH, Xie SM, Zhang M, Zi M, He PG, Yuan LM (2014) Novel inorganic mesoporous material with chiral nematic structure derived from nanocrystalline cellulose for high-resolution gas chromatographic separations. Anal Chem 86:9595–9602CrossRefGoogle Scholar
  9. 9.
    Li YX, Fu SG, Zhang JH, Xie SM, Li L, He YY, Zi M, Yuan LM (2018) A highly ordered chiral inorganic mesoporous material used as stationary phase for high-resolution gas chromatographic separations. J Chromatogr A 1557:99–106CrossRefGoogle Scholar
  10. 10.
    Dong J, Liu Y, Cui Y (2014) Chiral porous organic frameworks for asymmetric heterogeneous catalysis and gas chromatographic separation. Chem Commun 50:14949–14952CrossRefGoogle Scholar
  11. 11.
    Lu CM, Liu SQ, Xu JQ, Ding YJ, Ouyang GF (2016) Exploitation of a microporous organic polymer as a stationary phase for capillary gas chromatography. Anal Chim Acta 902:205–211CrossRefGoogle Scholar
  12. 12.
    Xie SM, Zhang ZJ, Wang ZY, Yuan LM (2011) Chiral metal-organic frameworks for high-resolution gas chromatographic separations. J Am Chem Soc 133:11892–11895CrossRefGoogle Scholar
  13. 13.
    McKeown NB (2010) Nanoporous molecular crystals. J Mater Chem 20:10588–10597CrossRefGoogle Scholar
  14. 14.
    Couderc G, Hulliger J (2010) Channel forming organic crystals: guest alignment and properties. Chem Soc Rev 39:1545–1554CrossRefGoogle Scholar
  15. 15.
    Holst JR, Trewin A, Cooper AI (2010) Porous organic molecules. Nat Chem 2:915–920CrossRefGoogle Scholar
  16. 16.
    Song Q, Jiang S, Hasell T, Liu M, Sun SJ, Cheetham AK, Sivaniah E, Cooper AI (2016) Porous organic cage thin films and molecular-sieving membranes. Adv Mater 28:2629–2637CrossRefGoogle Scholar
  17. 17.
    Mastalerz M (2010) Shape-persistent organic cage compounds by dynamic covalent bond formation. Angew Chem Int Ed 49:5042–5053CrossRefGoogle Scholar
  18. 18.
    Zhang G, Mastalerz M (2014) Organic cage compounds-from shape-persistency to function. Chem Soc Rev 43:1934–1947CrossRefGoogle Scholar
  19. 19.
    Tozawa T, Jones JTA, Swamy SI, Jiang S, Adams DJ, Shakespeare S, Clowes R, Bradshaw D, Hasell T, Chong SY, Tang C, Thompson S, Parker J, Trewin A, Bacsa J, Slawin AMZ, Steiner A, Cooper AI (2009) Porous organic cages. Nat Mater 8:973–978CrossRefGoogle Scholar
  20. 20.
    Jin YH, Voss BA, Noble RD, Zhang W (2010) A shape-persistent organic molecular cage with high selectivity for the adsorption of CO2 over N2. Angew Chem Int Ed 49:6348–6351CrossRefGoogle Scholar
  21. 21.
    Hasell T, Miklitz M, Stephenson A, Little MA, Chong SY, Clowes R, Chen L, Holden D, Tribello GA, Jelfs KE, Cooper AI (2016) Porous organic cages for sulfur hexafluoride separation. J Am Chem Soc 138:1653–1659CrossRefGoogle Scholar
  22. 22.
    Mitra T, Jelfs KE, Schmidtmann M, Ahmed A, Chong SY, Adams DJ, Cooper AI (2013) Molecular shape sorting using molecular organic cages. Nat Chem 5:276–281CrossRefGoogle Scholar
  23. 23.
    Chen L, Reiss PS, Chong SY, Holden D, Jelfs KE, Hasell T, Little MA, Kewley A, Briggs ME, Stephenson A, Thomas KM, Armstrong JA, Bell J, Busto J, Noel R, Liu J, Strachan DM, Thallapally PK, Cooper AI (2014) Separation of rare gases and chiral molecules by selective binding in porous organic cages. Nat Mater 13:954–960CrossRefGoogle Scholar
  24. 24.
    Brutschy M, Schneider MW, Mastalerz M, Waldvogel SR (2012) Porous organic cage compounds as highly potent affinity materials for sensing by quartz crystal microbalances. Adv Mater 24:6049–6052CrossRefGoogle Scholar
  25. 25.
    Sun JK, Zhan WW, Akita T, Xu Q (2015) Toward homogenization of heterogeneous metal nanoparticle catalysts with enhanced catalytic performance: soluble porous organic cage as a stabilizer and homogenizer. J Am Chem Soc 137:7063–7066CrossRefGoogle Scholar
  26. 26.
    McCaffrey R, Long H, Jin Y, Sanders A, Park W, Zhang W (2014) Template synthesis of gold nanoparticles with an organic molecular cage. J Am Chem Soc 136:1782–1785CrossRefGoogle Scholar
  27. 27.
    Uemura T, Nakanishi R, Mochizuki S, Kitagawa S, Mizuno M (2016) Radical polymerization of vinyl monomers in porous organic cages. Angew Chem Int Ed 55:6443–6447CrossRefGoogle Scholar
  28. 28.
    Zhang JH, Xie SM, Chen L, Wang BJ, He PG, Yuan LM (2015) Homochiral porous organic cage with high selectivity for the separation of racemates in gas chromatography. Anal Chem 87:7817–7824CrossRefGoogle Scholar
  29. 29.
    Zhang JH, Xie SM, Wang BJ, He PG, Yuan LM (2018) A homochiral porous organic cage with large cavity and pore windows for the efficient gas chromatography separation of enantiomers and positional isomers. J Sep Sci 41:1385–1394CrossRefGoogle Scholar
  30. 30.
    Xie SM, Zhang JH, Fu N, Wang BJ, Chen L, Yuan LM (2016) A chiral porous organic cage for molecular recognition using gas chromatography. Anal Chim Acta 903:156–163CrossRefGoogle Scholar
  31. 31.
    Zhang JH, Xie SM, Wang BJ, He PG, Yuan LM (2015) Highly selective separation of enantiomers using a chiral porous organic cage. J Chromatogr A 1426:174–182CrossRefGoogle Scholar
  32. 32.
    Xie SM, Zhang JH, Fu N, Wang BJ, Hu C, Yuan LM (2016) Application of homochiral alkylated organic cages as chiral stationary phases for molecular separations by capillary gas chromatography. Molecules 21:1466CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sheng-Ming Xie
    • 1
  • Jun-Hui Zhang
    • 1
  • Li-Ming Yuan
    • 1
  1. 1.Department of ChemistryYunnan Normal UniversityKunmingPeople’s Republic of China

Personalised recommendations