A Close-Up View of the Impact of Arachidonic Acid on the Phagocyte NADPH Oxidase

  • Tania Bizouarn
  • Hager Souabni
  • Xavier Serfaty
  • Aicha Bouraoui
  • Rawand Masoud
  • Gilda Karimi
  • Chantal Houée-Levin
  • Laura BaciouEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1982)


The NADPH oxidase NOX2 complex consists of assembled cytosolic and redox membrane proteins. In mammalian cells, natural arachidonic acid (cis-AA), released by activated phospholipase-A2, plays an important role in the activation of the NADPH oxidase, but the mechanism of action of cis-AA is still a matter of debate. In cell-free systems, cis-AA is commonly used for activation although its structural effects are still unclear. Undoubtedly cis-AA participates in the synergistic multi-partner assembly that can be hardly studied at the molecular level in vivo due to cellular complexity. The capacity of this anionic amphiphilic fatty acid to activate the oxidase is mainly explained by its ability to disrupt intramolecular bonds, mimicking phosphorylation events in cell signaling and therefore allowing protein-protein interactions. Interestingly the geometric isomerism of the fatty acid and its purity are crucial for optimal superoxide production in cell-free assays. Indeed, optimal NADPH oxidase assembly was hampered by the substitution of the cis form by the trans forms of AA isomers (Souabni et al., BBA-Biomembranes 1818:2314–2324, 2012). Structural analysis of the changes induced by these two compounds, by circular dichroism and by biochemical methods, revealed differences in the interaction between subunits. We describe how the specific geometry of AA plays an important role in the activation of the NOX2 complex.

Key words

Cell-free system Superoxide anion Recombinant proteins Thiol groups Arachidonic acid Cis-trans isomer fatty acid Synchrotron radiation circular dichroism 



Authors want to acknowledge Drs. M. Réfrégiers and F. Wien for SRCD measurements.


  1. 1.
    Dagher MC, Pick E (2007) Opening the black box: lessons from cell-free systems on the phagocyte NADPH-oxidase. Biochimie 89:1123–1132CrossRefGoogle Scholar
  2. 2.
    Molshanski-Mor S, Mizrahi A, Ugolev Y, Dahan I, Berdichevsky Y, Pick E (2007) Cell-free assays: the reductionist approach to the study of NADPH oxidase assembly, or “all you wanted to know about cell-free assays but did not dare to ask”. Methods Mol Biol 412:385–428CrossRefGoogle Scholar
  3. 3.
    Pick E (2014) Cell-free NADPH oxidase activation assays: “in vitro veritas”. Humana Press, Totowa, NJGoogle Scholar
  4. 4.
    Ostuni MA, Lamanuzzi LB, Bizouarn T, Dagher MC, Baciou L (2010) Expression of functional mammal flavocytochrome b(558) in yeast: comparison with improved insect cell system. Biochim Biophys Acta 1798:1179–1188CrossRefGoogle Scholar
  5. 5.
    Ezzine A, Souabni H, Bizouarn T, Baciou L (2014) Recombinant form of mammalian gp91(phox) is active in the absence of p220(phox). Biochem J 462:337–345CrossRefGoogle Scholar
  6. 6.
    Souabni H, Thoma V, Bizouarn T, Chatgilialoglu C, Siafaka-Kapadai A, Baciou L, Ferreri C, Houee-Levin C, Ostuni MA (2012) Trans Arachidonic acid isomers inhibit NADPH-oxidase activity by direct interaction with enzyme components. BBA-Biomembranes 1818:2314–2324CrossRefGoogle Scholar
  7. 7.
    Souabni H, Wien F, Bizouarn T, Houee-Levin C, Refregiers M, Baciou L (2017) The physicochemical properties of membranes correlate with the NADPH oxidase activity. Biochim Biophys Acta 1861:3520–3530CrossRefGoogle Scholar
  8. 8.
    Souabni H, Machillot P, Baciou L (2014) Contribution of lipid environment to NADPH oxidase activity: influence of sterol. Biochimie 107(Pt A):33–42CrossRefGoogle Scholar
  9. 9.
    Baciou L, Erard M, Dagher MC, Bizouarn T (2009) The cytosolic subunit p67phox of the NADPH-oxidase complex does not bind NADPH. FEBS Lett 583:3225–3229CrossRefGoogle Scholar
  10. 10.
    Leto TL, Adams AG, Demendez I (1994) Assembly of the phagocyte NADPH oxidase – binding of src homology-3 domains to proline-rich targets. Proc Natl Acad Sci U S A 91:10650–10654CrossRefGoogle Scholar
  11. 11.
    Lapouge K, Smith SJ, Groemping Y, Rittinger K (2002) Architecture of the p40-p47-p67phox complex in the resting state of the NADPH oxidase. A central role for p67phox. J Biol Chem 277:10121–10128CrossRefGoogle Scholar
  12. 12.
    Iyer SS, Pearson DW, Nauseef WM, Clark RA (1994) Evidence for a readily dissociable complex of P47phox and P67phox in cytosol of unstimulated human neutrophils. J Biol Chem 269:22405–22411PubMedGoogle Scholar
  13. 13.
    Lee JH, Lee KS, Chung T, Park J (2000) C-terminal region of the cytosolic subunit p47(phox) is a primary target of conformational change during the activation of leukocyte NADPH oxidase. Biochimie 82:727–732CrossRefGoogle Scholar
  14. 14.
    Hata K, Ito T, Takeshige K, Sumimoto H (1998) Anionic amphiphile-independent activation of the phagocyte NADPH oxidase in a cell-free system by p47phox and p67phox, both in C terminally truncated forms. Implication for regulatory Src homology 3 domain-mediated interactions. J Biol Chem 273:4232–4236CrossRefGoogle Scholar
  15. 15.
    Karimi G, Levin CH, Dagher MC, Baciou L, Bizouarn T (2014) Assembly of phagocyte NADPH oxidase: a concerted binding process? BBA-Gen Subjects 1840:3277–3283CrossRefGoogle Scholar
  16. 16.
    Swain SD, Helgerson SL, Davis AR, Nelson LK, Quinn MT (1997) Analysis of activation-induced conformational changes in p47(phox) using tryptophan fluorescence spectroscopy. J Biol Chem 272:29502–29510CrossRefGoogle Scholar
  17. 17.
    Park HS, Park JW (1998) Fluorescent labeling of the leukocyte NADPH oxidase subunit p47(phox): evidence for amphiphile-induced conformational changes. Arch Biochem Biophys 360:165–172CrossRefGoogle Scholar
  18. 18.
    Groemping Y, Lapouge K, Smerdon SJ, Rittinger K (2003) Molecular basis of phosphorylation-induced activation of the NADPH oxidase. Cell 113:343–355CrossRefGoogle Scholar
  19. 19.
    Shiose A, Sumimoto H (2000) Arachidonic acid and phosphorylation synergistically induce a conformational change of p47(phox) to activate the phagocyte NADPH oxidase. J Biol Chem 275:13793–13801CrossRefGoogle Scholar
  20. 20.
    Matono R, Miyano K, Kiyohara T, Sumimoto H (2014) Arachidonic acid induces direct interaction of the p67(phox)-rac complex with the phagocyte oxidase Nox2, leading to superoxide production. J Biol Chem 289:24874–24884CrossRefGoogle Scholar
  21. 21.
    Doussiere J, Gaillard J, Vignais PV (1996) Electron transfer across the O-2(−) generating flavocytochrome b of neutrophils. Evidence for a transition from a low-spin state to a high-spin state of the heme iron component. Biochemistry 35:13400–13410CrossRefGoogle Scholar
  22. 22.
    Bizouarn T, Karimi G, Masoud R, Souabni H, Machillot P, Serfaty X, Wien F, Refregiers M, Houee-Levin C, Baciou L (2016) Exploring the arachidonic acid-induced structural changes in phagocyte NADPH oxidase p47(phox) and p67(phox) via thiol accessibility and SRCD spectroscopy. FEBS J 283:2896–2910CrossRefGoogle Scholar
  23. 23.
    Nauseef WM (2007) Isolation of human neutrophils from venous blood. Methods Mol Biol 412:15–20CrossRefGoogle Scholar
  24. 24.
    van GB, Slater EC (1962) The extinction coefficient of cytochrome c. Biochim Biophys Acta 58:593–595CrossRefGoogle Scholar
  25. 25.
    Chatgilialoglu C, Ferreri C (2005) Trans lipids: the free radical path. Acc Chem Res 38:441–448CrossRefGoogle Scholar
  26. 26.
    Ferreri C, Chatgilialoglu C (2005) Geometrical trans lipid isomers: a new target for lipidomics. Chembiochem 6:1722–1734CrossRefGoogle Scholar
  27. 27.
    Anagnostopoulos D, Chatgilialoglu C, Ferreri C, Samadi A, Siafaka-Kapadai A (2005) Synthesis of all-trans arachidonic acid and its effect on rabbit platelet aggregation. Bioorg Med Chem Lett 15:2766–2770CrossRefGoogle Scholar
  28. 28.
    Ellman GL (1958) A colorimetric method for determining low concentrations of mercaptans. Arch Biochem Biophys 74:443–450CrossRefGoogle Scholar
  29. 29.
    Refregiers M, Wien F, Ta HP, Premvardhan L, Bac S, Jamme F, Rouam V, Lagarde B, Polack F, Giorgetta JL, Ricaud JP, Bordessoule M, Giuliani A (2012) DISCO synchrotron-radiation circular-dichroism endstation at SOLEIL. J Synchrotron Radiat 19:831–835CrossRefGoogle Scholar
  30. 30.
    Souabni H, Ezzine A, Bizouarn T, Baciou L (2017) Functional assembly of soluble and membrane recombinant proteins of mammalian NADPH oxidase complex. Methods Mol Biol 1635:27–43CrossRefGoogle Scholar
  31. 31.
    Light DR, Walsh C, O'Callagahn A, Goetzl E, Tauber A (1981) Characteristics of the cofactor requirements for the superoxide-generating NADPH oxidase of human polymorphonuclear leukocytes. Biochemistry 17:1468–1476CrossRefGoogle Scholar
  32. 32.
    Curnutte JT (1985) Activation of human neutrophil nicotinamide adenine-dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic-acid in a cell-free system. J Clin Investig 75:1740–1743CrossRefGoogle Scholar
  33. 33.
    Clark RA, Leidal KG, Pearson DW, Nauseef WM (1987) NADPH oxidase of human-neutrophils – subcellular-localization and characterization of an arachidonate-activatable superoxide-generating system. J Biol Chem 262:4065–4074PubMedGoogle Scholar
  34. 34.
    Ligeti E, Pizon V, Wittinghofer A, Gierschik P, Jakobs KH (1993) Gtpase activity of small Gtp-binding proteins in Hl-60 membranes is stimulated by arachidonic-acid. Eur J Biochem 216:813–820CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tania Bizouarn
    • 1
  • Hager Souabni
    • 1
  • Xavier Serfaty
    • 1
  • Aicha Bouraoui
    • 1
  • Rawand Masoud
    • 1
  • Gilda Karimi
    • 1
  • Chantal Houée-Levin
    • 1
  • Laura Baciou
    • 1
    Email author
  1. 1.Laboratoire de Chimie Physique, UMR8000 CNRSUniversité Paris-Sud, Université Paris-SaclayOrsayFrance

Personalised recommendations