Advertisement

NADPH Oxidases pp 667-693 | Cite as

DUOX Defects and Their Roles in Congenital Hypothyroidism

  • Xavier De DekenEmail author
  • Françoise Miot
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1982)

Abstract

Extracellular hydrogen peroxide is required for thyroperoxidase-mediated thyroid hormone synthesis in the follicular lumen of the thyroid gland. Among the NADPH oxidases, dual oxidases, DUOX1 and DUOX2, constitute a distinct subfamily initially identified as thyroid oxidases, based on their level of expression in the thyroid. Despite their high sequence similarity, the two isoforms present distinct regulations, tissue expression, and catalytic functions. Inactivating mutations in many of the genes involved in thyroid hormone synthesis cause thyroid dyshormonogenesis associated with iodide organification defect. This chapter provides an overview of the genetic alterations in DUOX2 and its maturation factor, DUOXA2, causing inherited severe hypothyroidism that clearly demonstrate the physiological implication of this oxidase in thyroid hormonogenesis. Mutations in the DUOX2 gene have been described in permanent but also in transient forms of congenital hypothyroidism. Moreover, accumulating evidence demonstrates that the high phenotypic variability associated with altered DUOX2 function is not directly related to the number of inactivated DUOX2 alleles, suggesting the existence of other pathophysiological factors. The presence of two DUOX isoforms and their corresponding maturation factors in the same organ could certainly constitute an efficient redundant mechanism to maintain sufficient H2O2 supply for iodide organification. Many of the reported DUOX2 missense variants have not been functionally characterized, their clinical impact in the observed phenotype remaining unresolved, especially in mild transient congenital hypothyroidism. DUOX2 function should be carefully evaluated using an in vitro assay wherein (1) DUOXA2 is co-expressed, (2) H2O2 production is activated, (3) and DUOX2 membrane expression is precisely analyzed.

Key words

NADPH oxidase Thyroid Congenital hypothyroidism DUOX DUOXA H2O2 Dual oxidase DUOX maturation factor Inherited disease 

Notes

Acknowledgments

The authors acknowledge the support of the “Fonds de la Recherche Scientifique” (FRS-FNRS), the “Fonds Docteur J.P. Naets” managed by the “Fondation Roi Baudouin,” and the “Fondation Tournay-Solvay.”

References

  1. 1.
    Warburg O (1908) Beobachtungen über die Oxydationsprozesse im Seeigelei. Z Physiol Chem 57:1–11CrossRefGoogle Scholar
  2. 2.
    Wong JL, Creton R, Wessel GM (2004) The oxidative burst at fertilization is dependent upon activation of the dual oxidase Udx1. Dev Cell 7(6):801–814PubMedCrossRefGoogle Scholar
  3. 3.
    Royer-Pokora B, Kunkel LM, Monaco AP, Goff SC, Newburger PE, Baehner RL, Cole FS, Curnutte JT, Orkin SH (1986) Cloning the gene for an inherited human disorder-chronic granulomatous disease-on the basis of its chromosomal location. Nature 322:32–38PubMedCrossRefGoogle Scholar
  4. 4.
    Kawahara T, Quinn MT, Lambeth JD (2007) Molecular evolution of the reactive oxygen-generating NADPH oxidase (Nox/Duox) family of enzymes. BMC Evol Biol 7:109PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Dumont JE (1971) The action of thyrotropin on thyroid metabolism. Vitam Horm 29:287–412PubMedCrossRefGoogle Scholar
  6. 6.
    Carvalho DP, Dupuy C, Gorin Y, Legue O, Pommier J, Haye B, Virion A (1996) The Ca2+- and reduced nicotinamide adenine dinucleotide phosphate-dependent hydrogen peroxide generating system is induced by thyrotropin in porcine thyroid cells. Endocrinology 137(3):1007–1012PubMedCrossRefGoogle Scholar
  7. 7.
    Gorin Y, Ohayon R, Carvalho DP, Dème D, Leseney AM, Haye B, Kaniewski J, Pommier J, Virion A, Dupuy C (1996) Solubilization and characterization of a thyroid Ca2+-dependent and NADPH-dependent K3Fe(CN)6 reductase. Relationship with the NADPH-dependent H2O2-generating system. Eur J Biochem 240:807–814PubMedCrossRefGoogle Scholar
  8. 8.
    Dupuy C, Ohayon R, Valent A, Noël-Hudson MS, Dème D, Virion A (1999) Purification of a novel flavoprotein involved in the thyroid NADPH oxidase. J Biol Chem 274(52):37265–37269CrossRefGoogle Scholar
  9. 9.
    De Deken X, Wang D, Costagliola S, Libert F, Vassart G, Dumont JE, Miot F (2000) Cloning of two human thyroid cDNAs encoding new members of the NADPH oxidase family. J Biol Chem 275(30):23227–23233CrossRefGoogle Scholar
  10. 10.
    Grasberger H, Refetoff S (2006) Identification of the maturation factor for dual oxidase: evolution of an eukariotic operon equivalent. J Biol Chem 281(27):18269–18272PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Geiszt M, Witta J, Baffi J, Lekstrom K, Leto TL (2003) Dual oxidases represent novel hydrogen peroxide sources supporting mucosal surface host defense. FASEB J 17(11):1502–1504PubMedCrossRefGoogle Scholar
  12. 12.
    De Deken X, Corvilain B, Dumont JE, Miot F (2014) Roles of DUOX-mediated hydrogen peroxide in metabolism, host defense, and signaling. Antioxid Redox Signal 20(17):2776–2793PubMedCrossRefGoogle Scholar
  13. 13.
    Eales JG (1997) Iodine metabolism and thyroid-related functions in organisms lacking thyroid follicles: are thyroid hormones also vitamins? Proc Soc Exp Biol Med 214(4):302–317PubMedCrossRefGoogle Scholar
  14. 14.
    Tong W, Kerkof P, Chaikoff IL (1962) Identification of labeled thyroxine and triiodothyronine in amphioxus treated with 131-I. Biochim Biophys Acta 56:326–331PubMedCrossRefGoogle Scholar
  15. 15.
    Opitz R, Maquet E, Zoenen M, Dadhich R, Costagliola S (2011) TSH receptor function is required for normal thyroid differentiation in zebrafish. Mol Endocrinol 25(9):1579–1599PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Imada M, Kurosumi M, Fujita H (1986) Three-dimensional aspects of blood vessels in thyroids from normal, low iodine diet-treated, TSH-treated, and PTU-treated rats. Cell Tissue Res 245:291–296PubMedCrossRefGoogle Scholar
  17. 17.
    Boelaert K, Franklyn JA (2005) Thyroid hormone in health and disease. J Endocrinol 187(1):1–15PubMedCrossRefGoogle Scholar
  18. 18.
    Pochin EE (1950) Investigation of thyroid function and disease with radioactive iodine. Lancet 2(6620):84–91PubMedCrossRefGoogle Scholar
  19. 19.
    Dunn JT (1998) What’s happening to our iodine? J Clin Endocrinol Metab 83(10):3398–3400PubMedGoogle Scholar
  20. 20.
    Soldin OP, Soldin SJ, Pezzullo JC (2003) Urinary iodine percentile ranges in the United States. Clin Chim Acta 328(1–2):185–190PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Colin IM, Denef JF, Lengelé B, Many MC, Gérard AC (2013) Recent insights into the cell biology of thyroid angiofollicular units. Endocrine Rev 34(2):1–30CrossRefGoogle Scholar
  22. 22.
    Vandevijvere S, Amsalkhir S, Oyen HV, Ines E, Moreno-Reyes R (2013) Iron status and its determinants in a nationally representative sample of pregnant women. J Acad Nutr Diet 113(5):659–666PubMedCrossRefGoogle Scholar
  23. 23.
    Kopp P, Pesce L, Solis-S JC (2008) Pendred syndrome and iodide transport in the thyroid. Trends Endocrinol Metab 19(7):260–268PubMedCrossRefGoogle Scholar
  24. 24.
    Wangemann P, Kim HM, Billings S, Nakaya K, Li X, Singh R, Sharlin DS, Forrest D, Marcus DC, Fong P (2009) Developmental delays consistent with cochlear hypothyroidism contribute to failure to develop hearing in mice lacking Slc26a4/pendrin expression. Am J Physiol Renal Physiol 297(5):F1435–F1447PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Twyffels L, Strickaert A, Virreira M, Massart C, Van Sande J, Wauquier C, Beauwens R, Dumont JE, Galietta LJ, Boom A, Kruys V (2014) Anoctamin-1/TMEM16A is the major apical iodide channel of the thyrocyte. Am J Physiol Cell Physiol 307(12):C1102–C1112PubMedCrossRefGoogle Scholar
  26. 26.
    Song Y, Ruf J, Lothaire P, Dequanter D, Andry G, Willemse E, Dumont JE, Van Sande J, De Deken X (2010) Association of duoxes with thyroid peroxidase and its regulation in thyrocytes. J Clin Endocrinol Metab 95(1):375–382PubMedCrossRefGoogle Scholar
  27. 27.
    Fortunato RS, Lima de Souza EC, Ameziane-el Hassani R, Boufraqech M, Weyemi U, Talbot M, Lagente-Chevallier O, Carvalho DP, Bidart JM, Schlumberger M, Dupuy C, Ameziane-El-Hassani R (2010) Functional consequences of dual oxidase-thyroperoxidase interaction at the plasma membrane. J Clin Endocrinol Metab 95(12):5403–5411PubMedCrossRefGoogle Scholar
  28. 28.
    Song Y, Driessens N, Costa M, De Deken X, Detours V, Corvilain B, Maenhaut C, Miot F, Van Sande J, Many MC, Dumont JE (2007) Roles of hydrogen peroxide in thyroid physiology and disease. J Clin Endocrinol Metab 92(10):3764–3773PubMedCrossRefGoogle Scholar
  29. 29.
    Corvilain B, Van Sande J, Laurent E, Dumont JE (1991) The H2O2-generating system modulates protein iodination and the activity of the pentose phosphate pathway in dog thyroid. Endocrinology 128:779–785PubMedCrossRefGoogle Scholar
  30. 30.
    Libert F, Ruel J, Ludgate M, Swillens S, Alexander N, Vassart G, Dinsart C (1987) Thyroperoxidase, an auto-antigen with mosaic structure made of nuclear and mitochondrial gene modules. EMBO J 6:4193–4196PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Taurog A, Dorris ML, Doerge DR (1996) Mechanism of simultaneous iodination and coupling catalyzed by thyroid peroxidase. Arch Biochem Biophys 330(1):24–32PubMedCrossRefGoogle Scholar
  32. 32.
    Van de Graaf SAR, Ris-Stalpers C, Pauws E, Mendive FM, Targovnik HM, De Vijlder JJM (2001) Up to date with human thyroglobulin. J Endocrinol 170:307–321PubMedCrossRefGoogle Scholar
  33. 33.
    Carvalho DP, Dupuy C (2017) Thyroid hormone biosynthesis and release. Mol Cell Endocrinol 458:6–15PubMedCrossRefGoogle Scholar
  34. 34.
    Cahnmann HJ, Pommier J, Nunez J (1977) Spatial requirement for coupling of iodotyrosine residues to form thyroid hormones. Proc Natl Acad Sci U S A 74(12):5333–5335PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Dunn JT, Dunn AD (2001) Update on intrathyroidal iodine metabolism. Thyroid 11(5):407–414PubMedCrossRefGoogle Scholar
  36. 36.
    Bernier-Valentin F, Kostrouch Z, Rabilloud R, Munari-Silem Y, Rousset B (1990) Coated vesicles from thyroid cells carry iodinated thyroglobulin molecules. First indication for an internalization of the thyroid prohormone via a mechanism of receptor-mediated endocytosis. J Biol Chem 265(28):17373–17380PubMedGoogle Scholar
  37. 37.
    Dunn AD, Dunn JT (1982) Thyroglobulin degradation by thyroidal proteases: action of purified cathepsin D. Endocrinology 111(1):280–289PubMedCrossRefGoogle Scholar
  38. 38.
    Gnidehou S, Caillou B, Talbot M, Ohayon R, Kaniewski J, Noel-Hudson MS, Morand S, Agnangji D, Sezan A, Courtin F, Virion A, Dupuy C (2004) Iodotyrosine dehalogenase 1 (DEHAL1) is a transmembrane protein involved in the recycling of iodide close to the thyroglobulin iodination site. FASEB J 18(13):1574–1576PubMedCrossRefGoogle Scholar
  39. 39.
    Moreno JC, Klootwijk W, van Toor H, Pinto G, D'Alessandro M, Léger A, Goudie D, Polak M, Grüters A, Visser TJ (2008) Mutations in the iodotyrosine deiodinase gene and hypothyroidism. N Engl J Med 358(17):1811–1818PubMedCrossRefGoogle Scholar
  40. 40.
    Cosmo CD, Liao XH, Dumitrescu AM, Philp NJ, Weiss RE, Refetoff S (2010) Mice deficient in MCT8 reveal a mechanism regulating thyroid hormone secretion. J Clin Invest 120(9):3377–3388PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Song Y, Massart C, Chico-Galdo V, Jin L, De Maertelaer V, Decoster C, Dumont JE, Van Sande J (2010) Species specific thyroid signal transduction: conserved physiology, divergent mechanisms. Mol Cell Endocrinol 319(1–2):56–62PubMedCrossRefGoogle Scholar
  42. 42.
    Corvilain B, Van Sande J, Dumont JE (1988) Inhibition by iodide of iodide binding to proteins: the “Wolff-Chaikoff” effect is caused by inhibition of H2O2 generation. Bioch Biophys Res Commun 154(3):1287–1292CrossRefGoogle Scholar
  43. 43.
    Panneels V, Van den Bergen H, Jacoby C, Braekman JC, Van Sande J, Dumont JE, Boeynaems JM (1994) Inhibition of H2O2 production by iodoaldehydes in cultured dog thyroid cells. Mol Cell Endocrinol 102:167–176PubMedCrossRefGoogle Scholar
  44. 44.
    Christophe-Hobertus C, Christophe D (2010) Delimitation and functional characterization of the bidirectional THOX-DUOXA promoter regions in thyrocytes. Mol Cell Endocrinol 317(1–2):161–167PubMedCrossRefGoogle Scholar
  45. 45.
    Xu C, Linderholm A, Grasberger H, Harper RW (2012) Dual oxidase 2 bidirectional promoter polymorphisms confer differential immune responses in airway epithelia. Am J Respir Cell Mol Biol 47(4):484–490PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Pachucki J, Wang D, Christophe D, Miot F (2004) Structural and functional characterization of the two human ThOX/Duox genes and their 5′-flanking regions. Mol Cell Endocrinol 214(1–2):53–62PubMedCrossRefGoogle Scholar
  47. 47.
    Morand S, Ueyama T, Tsujibe S, Saito N, Korzeniowska A, Leto TL (2009) Duox maturation factors form cell surface complexes with Duox affecting the specificity of reactive oxygen species generation. FASEB J 23(4):1205–1218PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Luxen S, Noack D, Frausto M, Davanture S, Torbett BE, Knaus UG (2009) Heterodimerization controls localization of Duox-DuoxA NADPH oxidases in airway cells. J Cell Sci 122(Pt 8):1238–1247PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Milenkovic M, De Deken X, Jin L, De Felice M, Di Lauro R, Dumont JE, Corvilain B, Miot F (2007) Duox expression and related H2O2 measurement in mouse thyroid: onset in embryonic development and regulation by TSH in adult. J Endocrinol 192(3):615–626PubMedCrossRefGoogle Scholar
  50. 50.
    De Deken X, Wang D, Dumont JE, Miot F (2002) Characterization of ThOX proteins as components of the thyroid H2O2-generating system. Exp Cell Res 273(2):187–196PubMedCrossRefGoogle Scholar
  51. 51.
    Morand S, Chaaraoui M, Kaniewski J, Deme D, Ohayon R, Noel-Hudson MS, Virion A, Dupuy C (2003) Effect of iodide on nicotinamide adenine dinucleotide phosphate oxidase activity and Duox2 protein expression in isolated porcine thyroid follicles. Endocrinology 144(4):1241–1248PubMedCrossRefGoogle Scholar
  52. 52.
    Morand S, Dos Santos OF, Ohayon R, Kaniewski J, Noel-Hudson MS, Virion A, Dupuy C (2003) Identification of a truncated dual oxidase 2 (DUOX2) messenger ribonucleic acid (mRNA) in two rat thyroid cell lines. Insulin and forskolin regulation of DUOX2 mRNA levels in FRTL-5 cells and porcine thyrocytes. Endocrinology 144(2):567–574PubMedCrossRefGoogle Scholar
  53. 53.
    Raad H, Eskalli Z, Corvilain B, Miot F, De Deken X (2013) Thyroid hydrogen peroxide production is enhanced by the Th2 cytokines, IL-4 and IL-13, through increased expression of the dual oxidase 2 and its maturation factor DUOXA2. Free Radic Biol Med 56:216–225PubMedCrossRefGoogle Scholar
  54. 54.
    Ueyama T, Sakuma M, Ninoyu Y, Hamada T, Dupuy C, Geiszt M, Leto TL, Saito N (2015) The extracellular A-loop of dual oxidases affects the specificity of reactive oxygen species release. J Biol Chem 290(10):6495–6506PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Grasberger H, De Deken X, Miot F, Pohlenz J, Refetoff S (2007) Missense mutations of dual oxidase 2 (DUOX2) implicated in congenital hypothyroidism have impaired trafficking in cells reconstituted with DUOX2 maturation factor. Mol Endocrinol 21(6):1408–1421PubMedCrossRefGoogle Scholar
  56. 56.
    Ameziane-El-Hassani R, Morand S, Boucher JL, Frapart YM, Apostolou D, Agnandji D, Gnidehou S, Ohayon R, Noel-Hudson MS, Francon J, Lalaoui K, Virion A, Dupuy C (2005) Dual oxidase-2 has an intrinsic Ca2+−dependent H2O2-generating activity. J Biol Chem 280(34):30046–30054PubMedCrossRefGoogle Scholar
  57. 57.
    Grasberger H, De Deken X, Mayo OB, Raad H, Weiss M, Liao XH, Refetoff S (2012) Mice deficient in dual oxidase maturation factors are severely hypothyroid. Mol Endocrinol 26(3):481–492PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Eskalli Z, Achouri Y, Hahn S, Many MC, Craps J, Refetoff S, Liao XH, Dumont JE, Van Sande J, Corvilain B, Miot F, De Deken X (2016) Overexpression of IL-4 in the thyroid of transgenic mice upregulates the expression of Duox1 and the anion transporter Pendrin. Thyroid 26(10):1499–1512PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Leto TL, Morand S, Hurt D, Ueyama T (2009) Targeting and regulation of reactive oxygen species generation by Nox family NADPH oxidases. Antioxid Redox Signal 11(10):2607–2619PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Rigutto S, Hoste C, Grasberger H, Milenkovic M, Communi D, Dumont JE, Corvilain B, Miot F, De Deken X (2009) Activation of dual oxidases Duox1 and Duox2: differential regulation mediated by cAMP-dependent protein kinase and protein kinase C-dependent phosphorylation. J Biol Chem 284(11):6725–6734PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Fortemaison N, Miot F, Dumont JE, Dremier S (2005) Regulation of H2O2 generation in thyroid cells does not involve Rac1 activation. Eur J Endocrinol 152(1):127–133PubMedCrossRefGoogle Scholar
  62. 62.
    Nakanaga T, Nadel J, Ueki IF, Koff JL, Shao MXG (2007) Regulation of interleukin-8 via an airway epithelial signaling cascade. Am J Physiol Lung Cell Mol Physiol 292(5):L1289–L1296PubMedCrossRefGoogle Scholar
  63. 63.
    Shao MX, Nadel JA (2005) Dual oxidase 1-dependent MUC5AC mucin expression in cultured human airway epithelial cells. Proc Natl Acad Sci U S A 102(3):767–772PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Corvilain B, Collyn L, Van Sande J, Dumont JE (2000) Stimulation by iodide of H2O2 generation in thyroid slices from several species. Am J Physiol Endocrinol Metab 278:692–699CrossRefGoogle Scholar
  65. 65.
    Lambeth JD (2007) Nox enzymes, ROS, and chronic disease: an example of antagonistic pleiotropy. Free Radic Biol Med 43(3):332–347PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Hoste C, Dumont JE, Miot F, De Deken X (2012) The type of DUOX-dependent ROS production is dictated by defined sequences in DUOXA. Exp Cell Res 318(18):2353–2364PubMedCrossRefGoogle Scholar
  67. 67.
    Meitzler JL, Hinde S, Banfi B, Nauseef WM, Ortiz de Montellano PR (2013) Conserved cysteine residues provide a protein-protein interaction surface in dual oxidase (DUOX) proteins. J Biol Chem 288(10):7147–7157PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Carre A, Louzada RA, Fortunato RS, Ameziane-El-Hassani R, Morand S, Ogryzko V, Carvalho DP, Grasberger H, Leto TL, Dupuy C (2015) When an intramolecular disulfide bridge governs the interaction of DUOX2 with its partner DUOXA2. Antioxid Redox Signal 23(9):724–733PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Zamproni I, Grasberger H, Cortinovis F, Vigone MC, Chiumello G, Mora S, Onigata K, Fugazzola L, Refetoff S, Persani L, Weber G (2008) Biallelic inactivation of the dual oxidase maturation factor 2 (DUOXA2) gene as a novel cause of congenital hypothyroidism. J Clin Endocrinol Metab 93(2):605–610PubMedCrossRefGoogle Scholar
  70. 70.
    Helmcke I, Heumüller S, Tikkanen R, Schröder K, Brandes RP (2009) Identification of structural elements in Nox1 and Nox4 controlling localization and activity. Antioxid Redox Signal 11(6):1279–1287PubMedCrossRefGoogle Scholar
  71. 71.
    Takac I, Schroder K, Zhang L, Lardy B, Anilkumar N, Lambeth JD, Shah AM, Morel F, Brandes RP (2011) The E-loop is involved in hydrogen peroxide formation by the NADPH oxidase Nox4. J Biol Chem 286(15):13304–13313PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Nisimoto Y, Diebold B, Consentino-Gomes D, Lambeth JD (2014) Nox4: a hydrogen peroxide-generating oxygen sensor. Biochemistry 53(31):5111–5120PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Van Vliet G (2004) Hypothyroidism in infants and children. In: Braverman LE, Utiger RD (eds) Werner & Ingbar's the thyroid: a fundamental and clinical text, 9th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1029–1048Google Scholar
  74. 74.
    Williams ED, Toyn CE, Harach HR (1989) The ultimobranchial gland and congenital thyroid abnormalities in man. J Pathol 159(2):135–141PubMedCrossRefGoogle Scholar
  75. 75.
    Park SM, Chatterjee VK (2005) Genetics of congenital hypothyroidism. J Med Genet 42(5):379–389PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    de Roux N, Misrahi M, Brauner R, Houang M, Carel JC, Granier M, Le Bouc Y, Ghinea N, Boumedienne A, Toublanc JE, Milgrom E (1996) Four families with loss of function mutations of the thyrotropin receptor. J Clin Endocrinol Metab 81(12):4229–4235PubMedGoogle Scholar
  77. 77.
    Stein SA, Oates EL, Hall CR, Grumbles RM, Fernandez LM, Taylor NA, Puett D, Jin S (1994) Identification of a point mutation in the thyrotropin receptor of the hyt/hyt hypothyroid mouse. Mol Endocrinol 8(2):129–138PubMedGoogle Scholar
  78. 78.
    Clifton-Bligh RJ, Wentworth JM, Heinz P, Crisp MS, John R, Lazarus JH, Ludgate M, Chatterjee VK (1998) Mutation of the gene encoding human TTF-2 associated with thyroid agenesis, cleft palate and choanal atresia. Nat Genet 19(4):399–401PubMedCrossRefGoogle Scholar
  79. 79.
    Devriendt K, Vanhole C, Matthijs G, de Zegher F (1998) Deletion of thyroid transcription factor-1 gene in an infant with neonatal thyroid dysfunction and respiratory failure. N Engl J Med 338(18):1317–1318PubMedCrossRefGoogle Scholar
  80. 80.
    Macchia PE, Lapi P, Krude H, Pirro MT, Missero C, Chiovato L, Souabni A, Baserga M, Tassi V, Pinchera A, Fenzi G, Gruters A, Busslinger M, Di Lauro R (1998) PAX8 mutations associated with congenital hypothyroidism caused by thyroid dysgenesis. Nat Genet 19(1):83–86PubMedCrossRefGoogle Scholar
  81. 81.
    Devos H, Rodd C, Gagne N, Laframboise R, Van Vliet G (1999) A search for the possible molecular mechanisms of thyroid dysgenesis: sex ratios and associated malformations. J Clin Endocrinol Metab 84(7):2502–2506PubMedCrossRefGoogle Scholar
  82. 82.
    Opitz R, Maquet E, Huisken J, Antonica F, Trubiroha A, Pottier G, Janssens V, Costagliola S (2012) Transgenic zebrafish illuminate the dynamics of thyroid morphogenesis and its relationship to cardiovascular development. Dev Biol 372(2):203–216PubMedCrossRefGoogle Scholar
  83. 83.
    Opitz R, Hitz MP, Vandernoot I, Trubiroha A, Abu-Khudir R, Samuels M, Desilets V, Costagliola S, Andelfinger G, Deladoey J (2015) Functional zebrafish studies based on human genotyping point to netrin-1 as a link between aberrant cardiovascular development and thyroid dysgenesis. Endocrinology 156(1):377–388PubMedCrossRefGoogle Scholar
  84. 84.
    Moreno JC, de Vijlder JJM, Vulsma T, Ris-Stalpers C (2003) Genetic basis of hypothyroidism: recent advances, gaps and strategies for future research. Trends Endocrinol Metab 14(7):318–326PubMedCrossRefGoogle Scholar
  85. 85.
    Grasberger H (2010) Defects of thyroidal hydrogen peroxide generation in congenital hypothyroidism. Mol Cell Endocrinol 322(1–2):99–106PubMedCrossRefGoogle Scholar
  86. 86.
    Moreno JC, Bikker H, Kempers MJ, van Trotsenburg P, Baas F, De Vijlder JJM, Vulsma T, Ris-Stalpers C (2002) Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med 347(2):95–102PubMedCrossRefGoogle Scholar
  87. 87.
    Kosugi S, Sato Y, Matsuda A, Ohyama Y, Fujieda K, Inomata H, Kameya T, Isozaki O, Jhiang SM (1998) High prevalence of T354P sodium/iodide symporter gene mutation in Japanese patients with iodide transport defect who have heterogeneous clinical pictures. J Clin Endocrinol Metab 83(11):4123–4129PubMedGoogle Scholar
  88. 88.
    Bikker H, Vulsma T, Baas F, De Vijlder JJ (1995) Identification of five novel inactivating mutations in the human thyroid peroxidase gene by denaturing gradient gel electrophoresis. Hum Mutat 6(1):9–16PubMedCrossRefGoogle Scholar
  89. 89.
    Targovnik HM, Frechtel GD, Mendive FM, Vono J, Cochaux P, Vassart G, Medeiros-Neto G (1998) Evidence for the segregation of three different mutated alleles of the thyroglobulin gene in a Brazilian family with congenital goiter and hypothyroidism. Thyroid 8(4):291–297PubMedCrossRefGoogle Scholar
  90. 90.
    Fujiwara H, Tatsumi K, Miki K, Harada T, Miyai K, Takai S, Amino N (1997) Congenital hypothyroidism caused by a mutation in the Na+/I- symporter. Nat Genet 16(2):124–125PubMedCrossRefGoogle Scholar
  91. 91.
    Everett LA, Glaser B, Beck JC, Idol JR, Buchs A, Heyman M, Adawi F, Hazani E, Nassir E, Baxevanis AD, Sheffield VC, Green ED (1997) Pendred syndrome is caused by mutation in a putative sulphate transporter gene (PDS). Nat Genet 17:411–422PubMedCrossRefGoogle Scholar
  92. 92.
    Delange F, Dodion J, Wolter R, Bourdoux P, Dalhem A, Glinoer D, Ermans AM (1978) Transient hypothyroidism in the newborn infant. J Pediatr 92(6):974–976PubMedCrossRefGoogle Scholar
  93. 93.
    Ordookhani A, Mirmiran P, Walfish PG, Azizi F (2007) Transient neonatal hypothyroidism is associated with elevated serum anti-thyroglobulin antibody levels in newborns and their mothers. J Pediatr 150(3):315–317. 317PubMedCrossRefGoogle Scholar
  94. 94.
    Bhavani N (2011) Transient congenital hypothyroidism. Indian J Endocrinol Metab 15(Suppl 2):S117–S120PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Ohye H, Fukata S, Hishinuma A, Kudo T, Nishihara E, Ito M, Kubota S, Amino N, Ieiri T, Kuma K, Miyauchi A (2008) A novel homozygous missense mutation of the dual oxidase 2 (DUOX2) gene in an adult patient with large goiter. Thyroid 18(5):561–566PubMedCrossRefGoogle Scholar
  96. 96.
    Maruo Y, Takahashi H, Soeda I, Nishikura N, Matsui K, Ota Y, Mimura Y, Mori A, Sato H, Takeuchi Y (2008) Transient congenital hypothyroidism caused by biallelic mutations of the dual oxidase 2 gene in Japanese patients detected by a neonatal screening program. J Clin Endocrinol Metab 93(11):4261–4267PubMedCrossRefGoogle Scholar
  97. 97.
    Yoshizawa-Ogasawara A, Ogikubo S, Satoh M, Narumi S, Hasegawa T (2013) Congenital hypothyroidism caused by a novel mutation of the dual oxidase 2 (DUOX2) gene. J Pediatr Endocrinol Metab 26:45–52PubMedCrossRefGoogle Scholar
  98. 98.
    De Marco G, Agretti P, Montanelli L, Di Cosmo C, Bagattini B, De Servi M, Ferrarini E, Dimida A, Freitas Ferreira AC, Molinaro A, Ceccarelli C, Brozzi F, Pinchera A, Vitti P, Tonacchera M (2011) Identification and functional analysis of novel dual oxidase 2 (DUOX2) mutations in children with congenital or subclinical hypothyroidism. J Clin Endocrinol Metab 96(8):E1335–E1339PubMedCrossRefGoogle Scholar
  99. 99.
    Moreno JC, Visser TJ (2007) New phenotypes in thyroid dyshormonogenesis: hypothyroidism due to DUOX2 mutations. Endocrine Dev 10:99–117CrossRefGoogle Scholar
  100. 100.
    Ohye H, Sugawara M (2010) Dual oxidase, hydrogen peroxide and thyroid diseases. Exp Biol Med 235(4):424–433CrossRefGoogle Scholar
  101. 101.
    Muzza M, Fugazzola L (2017) Disorders of H2O2 generation. Best Pract Res Clin Endocrinol Metab 31:225–240PubMedCrossRefGoogle Scholar
  102. 102.
    Abe K, Narumi S, Suwanai AS, Adachi M, Muroya K, Asakura Y (2018) Association between monoallelic TSHR mutations and congenital hypothyroidism: a Statistical approach. Eur J Endocrinol 178:137–144PubMedCrossRefGoogle Scholar
  103. 103.
    Liu S, Zhang W, Zhang L, Zou H, Lu K, Li Q, Xia H, Yan S, Ma X (2018) Genetic and functional analysis of two missense DUOX2 mutations in congenital hypothyroidism and goiter. Oncotarget 9(4):4366–4374PubMedGoogle Scholar
  104. 104.
    Parlato M, Charbit-Henrion F, Hayes P, Tiberti A, Aloi M, Cucchiara S, Bègue B, Bras M, Pouliet A, Rakotobe S, Ruemmele F, Knaus UG, Cerf-Bensussan N (2017) First identification of biallelic inherited DUOX2 inactivating mutations as a cause of very early onset inflammatory bowel disease. Gastroenterology 153(2):609–611PubMedCrossRefGoogle Scholar
  105. 105.
    Sugisawa C, Higuchi S, Takagi M, Hasegawa Y, Taniyama M, Abe K, Hasegawa T, Narumi S (2017) Homozygous DUOXA2 mutation (p.Tyr138*) in a girl with congenital hypothyroidism and her apparently unaffected brother: case report and review of the literature. Endocr J 64(1):1–6CrossRefGoogle Scholar
  106. 106.
    Kizys MML, Louzada RA, Mitne-Neto M, Jara JR, Furuzawa GK, de Carvalho DP, Dias-da-Silva MR, Nesi-França S, Dupuy C, RMB M (2017) DUOX2 mutations are associated with congenital hypothyroidism with ectopic thyroid gland. J Clin Endocrinol Metabol 102(11):4060–4071CrossRefGoogle Scholar
  107. 107.
    Zheng X, Ma S, Guo M, Yl Q, Yang L (2017) Compound heterozygous mutations in the DUOX2/DUOXA2 genes cause congenital hypothyroidism. Yonsei Med J 58(4):888–890PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Aycan Z, Cangul H, Muzza M, Bas VN, Fugazzola L, Chatterjee VK, Persani L, Schoenmakers N (2017) Digenic DUOX1 and DUOX2 mutations in cases with congenital hypothyroidism. J Clin Endocrinol Metabol 102(September):3085–3090CrossRefGoogle Scholar
  109. 109.
    Park KJ, Park HK, Kim YJ, Lee KR, Park JH, Park JH, Park HD, Lee SY, Kim JW (2016) DUOX2 mutations are frequently associated with congenital hypothyroidism in the Korean population. Ann Lab Med 36(2):145–153PubMedCrossRefGoogle Scholar
  110. 110.
    Levine AP, Pontikos N, Schiff ER, Jostins L, Speed D, Lovat LB, Barrett JC, Grasberger H, Plagnol V, Segal AW (2016) Genetic complexity of Crohn’s disease in two large ashkenazi jewish families. Gastroenterology 151(4):698–709PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Hayes P, Dhillon S, O'Neill K, Thoeni C, Hui KY, Elkadri A, Guo CH, Kovacic L, Aviello G, Alvarez L, Griffiths AM, Snapper SB, Brant SR, Doroshow JH, Silverberg MS, Peter I, McGovern DPB, Cho J, Brumell JH, Uhlig HH, Bourke B, Muise AM, Knaus UG (2015) Defects in nicotinamide-adenine dinucleotide phosphate oxidase genes NOX1 and DUOX2 in very early onset inflammatory bowel disease. Cell Mol Gastroenterol Hepatol 1(5):489–502PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Fu C, Zhang S, Su J, Luo S, Zheng H, Wang J, Qin H, Chen Y, Shen Y, Hu X, Fan X, Luo J, Xie B, Chen R, Chen S (2015) Mutation screening of DUOX2 in Chinese patients with congenital hypothyroidism. J Endocrinol Investig 38(11):1219–1224CrossRefGoogle Scholar
  113. 113.
    Fu C, Luo S, Zhang S, Wang J, Zheng H, Yang Q, Xie B, Hu X, Fan X, Luo J, Chen R, Su J, Shen Y, Gu X, Chen S (2016) Next-generation sequencing analysis of DUOX2 in 192 Chinese subclinical congenital hypothyroidism (SCH) and CH patients. Clin Chim Acta 458:30–34PubMedCrossRefGoogle Scholar
  114. 114.
    Tan M, Huang Y, Jiang X, Li P, Tang C, Jia X, Chen Q, Chen W, Sheng H, Feng Y, Wu D, Liu L (2016) The prevalence, clinical, and molecular characteristics of congenital hypothyroidism caused by DUOX2 mutations: a population-based cohort study in Guangzhou. Horm Metab Res 48(9):581–588PubMedCrossRefGoogle Scholar
  115. 115.
    Jiang H, Wu J, Ke S, Hu Y, Fei A, Zhen Y, Yu J, Zhu K (2016) High prevalence of DUOX2 gene mutations among children with congenital hypothyroidism in central China. Eur J Med Genet 59(10):526–531PubMedCrossRefGoogle Scholar
  116. 116.
    Narumi S, Muroya K, Asakura Y, Aachi M, Hasegawa T (2011) Molecular basis of thyroid dyshormonogenesis: genetic screening in population-based Japanese patients. J Clin Endocrinol Metab 96(11):E1838–E1842PubMedCrossRefGoogle Scholar
  117. 117.
    Rabbiosi S, Vigone MC, Cortinovis F, Zamproni I, Fugazzola L, Persani L, Corbetta C, Chiumello G, Weber G (2013) Congenital hypothyroidism with eutopic thyroid gland: analysis of clinical and biochemical features at diagnosis and after re-evaluation. J Clin Endocrinol Metab 98(4):1395–1402PubMedCrossRefGoogle Scholar
  118. 118.
    Jin HY, Heo SH, Kim YM, Kim GH, Choi JH, Lee BH, Yoo HW (2014) High frequency of DUOX2 mutations in transient or permanent congenital hypothyroidism with eutopic thyroid glands. Horm Res Paediatr 82:252–260PubMedCrossRefGoogle Scholar
  119. 119.
    Muzza M, Rabbiosi S, Vigone MC, Zamproni I, Cirello V, Maffini M, Maruca K, Schoenmakers N, Beccaria L, Gallo F, Park SM, Beck-Peccoz P, Persani L, Weber G, Fugazzola L (2014) The clinical and molecular characterization of patients with dyshormonogenic congenital hypothyroidism reveals specific diagnostic clues for Duox2 defects. J Clin Endocrinol Metab 99:E544–E553PubMedCrossRefGoogle Scholar
  120. 120.
    Hulur I, Hermanns P, Nestoris C, Heger S, Refetoff S, Pohlenz J, Grasberger H (2011) A single copy of the recently identified dual oxidase maturation factor (DUOXA) 1 gene produces only mild transient hypothyroidism in a patient with a novel biallelic DUOXA2 mutation and monoallelic DUOXA1 deletion. J Clin Endocrinol Metab 96(5):E841–E845PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Yi RH, Zhu WB, Yang LY, Lan L, Chen Y, Zhou JF, Wang J, Su YQ (2013) A novel dual oxidase maturation factor 2 gene mutation for congenital hypothyroidism. Int J Mol Med 31(2):467–470PubMedCrossRefGoogle Scholar
  122. 122.
    Liu S, Liu L, Niu X, Lu D, Xia H, Yan S (2015) A novel missense mutation (I26M) in DUOXA2 causing congenital goiter hypothyroidism impairs NADPH oxidase activity but not protein expression. J Clin Endocrinol Metabol 100:1225–1229CrossRefGoogle Scholar
  123. 123.
    Zheng X, Ma SG, Qiu YL, Guo ML, Shao XJ (2016) A novel c.554+5C>T mutation in the DUOXA2 gene combined with p.R885Q mutation in the DUOX2 gene causing congenital hypothyroidism. J Clin Res Pediatr Endocrinol 8(2):224–227PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Lx Y, Sg M, Yl Q, Zheng X (2016) Heterozygous mutations of the DUOXA2 and DUOX2 genes in dizygotic twins with congenital hypothyroidism. Clin Lab 62(5):849–854Google Scholar
  125. 125.
    Nicholas AK, Serra EG, Cangul H, Alyaarubi S, Ullah I, Schoenmakers E, Deeb A, Habeb AM, Almaghamsi M, Peters C, Nathwani N, Aycan Z, Saglam H, Bober E, Dattani M, Shenoy S, Murray PG, Babiker A, Willemsen R, Thankamony A, Lyons G, Irwin R, Padidela R, Tharian K, Davies JH, Puthi V, Park SM, Massoud AF, Gregory JW, Albanese A, Pease-Gevers E, Martin H, Brugger K, Maher ER, Chatterjee VK, Anderson CA, Schoenmakers N (2016) Comprehensive screening of eight known causative genes in congenital hypothyroidism with gland-in-situ. J Clin Endocrinol Metab 101(12):4521–4531PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    LaFranchi S (1999) Congenital hypothyroidism: etiologies, diagnosis, and management. Thyroid 9(7):735–740PubMedCrossRefGoogle Scholar
  127. 127.
    Maruo Y, Nagasaki K, Matsui K, Mimura Y, Mori A, Fukami M, Takeuchi Y (2016) Natural course of congenital hypothyroidism by dual oxidase 2 mutations from the neonatal period through puberty. Eur J Endocrinol 174(4):453–463PubMedCrossRefGoogle Scholar
  128. 128.
    Weyemi U, Caillou B, Talbot M, Ameziane-El-Hassani R, Lacroix L, Lagent-Chevallier O, Al Ghuzlan A, Roos D, Bidart JM, Virion A, Schlumberger M, Dupuy C (2010) Intracellular expression of reactive oxygen species-generating NADPH oxidase NOX4 in normal and cancer thyroid tissues. Endocr Relat Cancer 17(1):27–37PubMedCrossRefGoogle Scholar
  129. 129.
    Vigone MC, Fugazzola L, Zamproni I, Passoni A, Di Candia S, Chiumello G, Persani L, Weber G (2005) Persistent mild hypothyroidism associated with novel sequence variants of the DUOX2 gene in two siblings. Hum Mutat 26(4):395PubMedCrossRefGoogle Scholar
  130. 130.
    Kasahara T, Narumi S, Okasora K, Takaya R, Tamai H, Hasegawa T (2013) Delayed onset congenital hypothyroidism in a patient with DUOX2 mutations and maternal iodine excess. Am J Med Genet A 161A(1):214–217PubMedCrossRefGoogle Scholar
  131. 131.
    Zimmermann MB, Jooste PL, Pandav CS (2008) Iodine-deficiency disorders. Lancet 372(9645):1251–1262PubMedCrossRefGoogle Scholar
  132. 132.
    Satoh M, Aso K, Ogikubo S, Yoshizawa-Ogasawara A, Saji T (2015) Hypothyroidism caused by the combination of two heterozygous mutations: one in the TSH receptor gene the other in the DUOX2 gene. J Pediatr Endocrinol Metab 28(5–6):657–661PubMedGoogle Scholar
  133. 133.
    Yoshizawa-Ogasawara A, Abe K, Ogikubo S, Narumi S, Hasegawa T, Satoh M (2016) Transient congenital hypothyroidism caused by compound heterozygous mutations affecting the NADPH-oxidase domain of DUOX2. J Pediatr Endocrinol Metab 29(3):363–371PubMedCrossRefGoogle Scholar
  134. 134.
    Abe K, Narumi S, Suwanai AS, Hamajima T, Hasegawa T (2015) Pseudodominant inheritance in a family with nonautoimmune hypothyroidism due to biallelic DUOX2 mutations. Clin Endocrinol 83(3):394–398CrossRefGoogle Scholar
  135. 135.
    Hoste C, Rigutto S, Van Vliet G, Miot F, De Deken X (2010) Compound heterozygosity for a novel hemizygous missense mutation and a partial deletion affecting the catalytic core of the H2O2-generating enzyme DUOX2 associated with transient congenital hypothyroidism. Hum Mutat 31(4):E1304–E1319PubMedCrossRefGoogle Scholar
  136. 136.
    Jirapongsananuruk O, Malech HL, Kuhns DB, Niemela JE, Brown MR, Anderson-Cohen M, Fleisher TA (2003) Diagnostic paradigm for evaluation of male patients with chronic granulomatous disease, based on the dihydrorhodamine 123 assay. J Allergy Clin Immunol 111(2):374–379PubMedCrossRefGoogle Scholar
  137. 137.
    Stasia MJ (2007) The X+ chronic granulomatous disease as a fabulous model to study the NADPH oxidase complex activation. Med Sci (Paris) 23(5):526–532CrossRefGoogle Scholar
  138. 138.
    Tonacchera M, De Marco G, Agretti P, Montanelli L, Di Cosmo C, Freitas Ferreira AC, Dimida A, Ferrarini E, Ramos HE, Ceccarelli C, Brozzi F, Pinchera A, Vitti P (2009) Identification and functional studies of two new dual-oxidase 2 (DUOX2) mutations in a child with congenital hypothyroidism and a eutopic normal-size thyroid gland. J Clin Endocrinol Metab 94(11):4309–4314PubMedCrossRefGoogle Scholar
  139. 139.
    Grasberger H, Noureldin M, Kao TD, Adler J, Lee JM, Bishu S, El Zaatari M, Kao JY, Waljee AK (2018) Increased risk for inflammatory bowel disease in congenital hypothyroidism supports the existence of a shared susceptibility factor. Sci Rep 8(1):10158PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Faculté de Médecine, Université Libre de Bruxelles (ULB)Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire (IRIBHM)BrusselsBelgium

Personalised recommendations